Diophantine Equations and Power Integral Bases, Istv?n Ga?l
Автор: Andreescu Titu Название: Quadratic Diophantine Equations ISBN: 1493938800 ISBN-13(EAN): 9781493938803 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book reveiws the last two decades of computational techniques and progress in the classical theory of quadratic diophantine equations. Presents important quadratic diophantine equations and applications, and includes excellent examples and open problems.
Автор: Gisbert W?stholz Название: Diophantine Approximation and Transcendence Theory ISBN: 3540185976 ISBN-13(EAN): 9783540185970 Издательство: Springer Рейтинг: Цена: 6288.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: J?zsef Beck Название: Probabilistic Diophantine Approximation ISBN: 3319107402 ISBN-13(EAN): 9783319107400 Издательство: Springer Рейтинг: Цена: 16769.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book gives a comprehensive treatment of random phenomena and distribution results in diophantine approximation, with a particular emphasis on quadratic irrationals.
Автор: Evertse Название: Discriminant Equations in Diophantine Number Theory ISBN: 1107097614 ISBN-13(EAN): 9781107097612 Издательство: Cambridge Academ Рейтинг: Цена: 23285.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Discriminant equations are an important class of Diophantine equations. This book provides the first comprehensive account of discriminant equations and their applications, building on the authors` earlier volume, Unit Equations in Diophantine Number Theory. Background material makes the book accessible to experts and young researchers alike.
Автор: Evertse Название: Unit Equations in Diophantine Number Theory ISBN: 1107097606 ISBN-13(EAN): 9781107097605 Издательство: Cambridge Academ Рейтинг: Цена: 10611.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Unit equations play a central role in Diophantine number theory. This book provides a comprehensive and up-to-date treatment of unit equations and their various applications. It brings together the most important results and gives an overview of the basic techniques, making it accessible to young researchers.
Автор: Smart Nigel P. Название: The Algorithmic Resolution of Diophantine Equations ISBN: 0521646332 ISBN-13(EAN): 9780521646338 Издательство: Cambridge Academ Рейтинг: Цена: 9187.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A coherent account of the computational methods used to solve diophantine equations. Topics include local methods, sieving, descent arguments, the LLL algorithm, Baker`s theory of linear forms in logarithms, and problems associated with curves. Useful exercises and bibliography are included. Suitable for graduate students and research workers.
Описание: The circle method has its genesis in a paper of Hardy and Ramanujan (see Hardy 1])in 1918concernedwiththepartitionfunction andtheproblemofrep- resenting numbers as sums ofsquares. Later, in a series of papers beginning in 1920entitled "some problems of'partitio numerorum''', Hardy and Littlewood (see Hardy 1]) created and developed systematically a new analytic method, the circle method in additive number theory. The most famous problems in ad- ditive number theory, namely Waring's problem and Goldbach's problem, are treated in their papers. The circle method is also called the Hardy-Littlewood method. Waring's problem may be described as follows: For every integer k 2 2, there is a number s= s( k) such that every positive integer N is representable as (1) where Xi arenon-negative integers. This assertion wasfirst proved by Hilbert 1] in 1909. Using their powerful circle method, Hardy and Littlewood obtained a deeper result on Waring's problem. They established an asymptotic formula for rs(N), the number of representations of N in the form (1), namely k 1 provided that 8 2 (k - 2)2 - +5. Here
Автор: Vladimir G. Sprindzuk Название: Classical Diophantine Equations ISBN: 3540573593 ISBN-13(EAN): 9783540573593 Издательство: Springer Рейтинг: Цена: 6288.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This monograph provides a detailed discussion of the theory of lower bounds for linear forms in the logarithms of algebraic numbers and its applications to the obtaining of upper bounds for solutions to the eponymous classical diophantine equation.
Автор: Corvaja Pietro Название: Applications of Diophantine Approximation to Integral Points ISBN: 1108424945 ISBN-13(EAN): 9781108424943 Издательство: Cambridge Academ Рейтинг: Цена: 18216.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This introduction to Diophantine approximation and Diophantine equations, with applications to related topics, pays special regard to Schmidt`s subspace theorem. It contains a number of results, some never before published in book form, and some new. The authors introduce various techniques and open questions to guide future research.
Описание: This book reviews higher dimensional Nevanlinna theory and its relationship with Diophantine approximation theory. Coverage builds up from the classical theory of meromorphic functions on the complex plane with full proofs, to the current state of research.
Автор: Steuding, Jorn Название: Diophantine Analysis ISBN: 0367392852 ISBN-13(EAN): 9780367392857 Издательство: Taylor&Francis Рейтинг: Цена: 9798.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
While its roots reach back to the third century, diophantine analysis continues to be an extremely active and powerful area of number theory. Many diophantine problems have simple formulations, they can be extremely difficult to attack, and many open problems and conjectures remain.
Diophantine Analysis examines the theory of diophantine approximations and the theory of diophantine equations, with emphasis on interactions between these subjects. Beginning with the basic principles, the author develops his treatment around the theory of continued fractions and examines the classic theory, including some of its applications. He also explores modern topics rarely addressed in other texts, including the abc conjecture, the polynomial Pell equation, and the irrationality of the zeta function and touches on topics and applications related to discrete mathematics, such as factoring methods for large integers. Setting the stage for tackling the field's many open problems and conjectures, Diophantine Analysis is an ideal introduction to the fundamentals of this venerable but still dynamic field. A detailed appendix supplies the necessary background material, more than 200 exercises reinforce the concepts, and engaging historical notes bring the subject to life.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru