Machine Learning, Optimization, and Data Science, Giuseppe Nicosia; Panos Pardalos; Giovanni Giuffri
Автор: Kevin Murphy Название: Machine Learning ISBN: 0262018020 ISBN-13(EAN): 9780262018029 Издательство: MIT Press Рейтинг: Цена: 18622.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.
Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.
The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package -- PMTK (probabilistic modeling toolkit) -- that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Автор: J. Joshua Thomas, Pinar Karagoz, B. Bazeer Ahamed, Pandian Vasant Название: Deep Learning Techniques and Optimization Strategies in Big Data Analytics ISBN: 179981193X ISBN-13(EAN): 9781799811930 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 27027.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Many approaches have sprouted from artificial intelligence (AI) and produced major breakthroughs in the computer science and engineering industries. Deep learning is a method that is transforming the world of data and analytics. Optimization of this new approach is still unclear, however, and there's a need for research on the various applications and techniques of deep learning in the field of computing. Deep Learning Techniques and Optimization Strategies in Big Data Analytics is a collection of innovative research on the methods and applications of deep learning strategies in the fields of computer science and information systems. While highlighting topics including data integration, computational modeling, and scheduling systems, this book is ideally designed for engineers, IT specialists, data analysts, data scientists, engineers, researchers, academicians, and students seeking current research on deep learning methods and its application in the digital industry.
Автор: J. Joshua Thomas, Pinar Karagoz, B. Bazeer Ahamed, Название: Deep Learning Techniques and Optimization Strategies in Big Data Analytics ISBN: 1799811921 ISBN-13(EAN): 9781799811923 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 35897.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Many approaches have sprouted from artificial intelligence (AI) and produced major breakthroughs in the computer science and engineering industries. Deep learning is a method that is transforming the world of data and analytics. Optimization of this new approach is still unclear, however, and there's a need for research on the various applications and techniques of deep learning in the field of computing. Deep Learning Techniques and Optimization Strategies in Big Data Analytics is a collection of innovative research on the methods and applications of deep learning strategies in the fields of computer science and information systems. While highlighting topics including data integration, computational modeling, and scheduling systems, this book is ideally designed for engineers, IT specialists, data analysts, data scientists, engineers, researchers, academicians, and students seeking current research on deep learning methods and its application in the digital industry.
A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications.
Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context.
After discussing the trajectory from data to insight to decision, the book describes four approaches to machine learning: information-based learning, similarity-based learning, probability-based learning, and error-based learning. Each of these approaches is introduced by a nontechnical explanation of the underlying concept, followed by mathematical models and algorithms illustrated by detailed worked examples. Finally, the book considers techniques for evaluating prediction models and offers two case studies that describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book, informed by the authors' many years of teaching machine learning, and working on predictive data analytics projects, is suitable for use by undergraduates in computer science, engineering, mathematics, or statistics; by graduate students in disciplines with applications for predictive data analytics; and as a reference for professionals.
Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.
Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.
Please visit the book companion website at https: //www.cs.waikato.ac.nz/ ml/weka/book.html.
It contains
Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.
Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
Includes open-access online courses that introduce practical applications of the material in the book
Автор: Pardalos Название: Machine Learning, Optimization, and Big Data ISBN: 3319514687 ISBN-13(EAN): 9783319514680 Издательство: Springer Рейтинг: Цена: 9224.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes revised selected papers from the Second International Workshop on Machine Learning, Optimization, and Big Data, MOD 2016, held in Volterra, Italy, in August 2016. The 40 papers presented in this volume were carefully reviewed and selected from 97 submissions.
Автор: Panos Pardalos; Mario Pavone; Giovanni Maria Farin Название: Machine Learning, Optimization, and Big Data ISBN: 3319279254 ISBN-13(EAN): 9783319279251 Издательство: Springer Рейтинг: Цена: 7826.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This bookconstitutes revised selected papers from the First International Workshop onMachine Learning, Optimization, and Big Data, MOD 2015, held in Taormina, Sicily,Italy, in July 2015. The 32papers presented in this volume were carefully reviewed and selected from 73submissions.
Автор: Nicosia Название: Machine Learning, Optimization, and Big Data ISBN: 331972925X ISBN-13(EAN): 9783319729251 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the post-conference proceedings of the Third International Workshop on Machine Learning, Optimization, and Big Data, MOD 2017, held in Volterra, Italy, in September 2017. The 50 full papers presented were carefully reviewed and selected from 126 submissions.
Автор: Giuseppe Nicosia; Panos Pardalos; Renato Umeton; G Название: Machine Learning, Optimization, and Data Science ISBN: 3030375986 ISBN-13(EAN): 9783030375980 Издательство: Springer Рейтинг: Цена: 13695.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the post-conference proceedings of the 5th International Conference on Machine Learning, Optimization, and Data Science, LOD 2019, held in Siena, Italy, in September 2019.
Автор: Tor Lattimore, Csaba Szepesvari Название: Bandit Algorithms ISBN: 1108486827 ISBN-13(EAN): 9781108486828 Издательство: Cambridge Academ Рейтинг: Цена: 6970.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Decision-making in the face of uncertainty is a challenge in machine learning, and the multi-armed bandit model is a common framework to address it. This comprehensive introduction is an excellent reference for established researchers and a resource for graduate students interested in exploring stochastic, adversarial and Bayesian frameworks.
Автор: Boyd Stephen Название: Introduction to Applied Linear Algebra ISBN: 1316518965 ISBN-13(EAN): 9781316518960 Издательство: Cambridge Academ Рейтинг: Цена: 6811.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A groundbreaking introductory textbook covering the linear algebra methods needed for data science and engineering applications. It combines straightforward explanations with numerous practical examples and exercises from data science, machine learning and artificial intelligence, signal and image processing, navigation, control, and finance.
Автор: Raschka, Sebastian Mirjalili, Vahid Название: Python machine learning - ISBN: 1787125939 ISBN-13(EAN): 9781787125933 Издательство: Неизвестно Цена: 8091.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This second edition of Python Machine Learning by Sebastian Raschka is for developers and data scientists looking for a practical approach to machine learning and deep learning. In this updated edition, you`ll explore the machine learning process using Python and the latest open source technologies, including scikit-learn and TensorFlow 1.x.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru