Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Graph-Based Representations in Pattern Recognition, Donatello Conte; Jean-Yves Ramel; Pasquale Foggia


Варианты приобретения
Цена: 8104.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Donatello Conte; Jean-Yves Ramel; Pasquale Foggia
Название:  Graph-Based Representations in Pattern Recognition
ISBN: 9783030200800
Издательство: Springer
Классификация:






ISBN-10: 3030200809
Обложка/Формат: Soft cover
Страницы: 247
Вес: 0.40 кг.
Дата издания: 2019
Серия: Image Processing, Computer Vision, Pattern Recognition, and Graphics
Язык: English
Издание: 1st ed. 2019
Иллюстрации: 74 illustrations, color; 18 illustrations, black and white; x, 247 p. 92 illus., 74 illus. in color.
Размер: 234 x 156 x 14
Читательская аудитория: Professional & vocational
Основная тема: Computer Science
Подзаголовок: 12th IAPR-TC-15 International Workshop, GbRPR 2019, Tours, France, June 19–21, 2019, Proceedings
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: They cover topics such as graph edit distance, graph matching, machine learning for graph problems, network and graph embedding, spectral graph problems, and parallel algorithms for graph problems.


Linear Algebra and Learning from Data

Автор: Strang Gilbert
Название: Linear Algebra and Learning from Data
ISBN: 0692196382 ISBN-13(EAN): 9780692196380
Издательство: Cambridge Academ
Рейтинг:
Цена: 9978.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Linear algebra and the foundations of deep learning, together at last! From Professor Gilbert Strang, acclaimed author of Introduction to Linear Algebra, comes Linear Algebra and Learning from Data, the first textbook that teaches linear algebra together with deep learning and neural nets. This readable yet rigorous textbook contains a complete course in the linear algebra and related mathematics that students need to know to get to grips with learning from data. Included are: the four fundamental subspaces, singular value decompositions, special matrices, large matrix computation techniques, compressed sensing, probability and statistics, optimization, the architecture of neural nets, stochastic gradient descent and backpropagation.

Understanding Machine Learning

Автор: Shalev-Shwartz
Название: Understanding Machine Learning
ISBN: 1107057132 ISBN-13(EAN): 9781107057135
Издательство: Cambridge Academ
Рейтинг:
Цена: 11194.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. This book explains the principles behind the automated learning approach and the considerations underlying its usage. The authors explain the `hows` and `whys` of machine-learning algorithms, making the field accessible to both students and practitioners.

Extreme Value Theory-Based Methods for Visual Recognition

Автор: Walter J. Scheirer
Название: Extreme Value Theory-Based Methods for Visual Recognition
ISBN: 1627057005 ISBN-13(EAN): 9781627057004
Издательство: Turpin
Рейтинг:
Цена: 10340.00 р.
Наличие на складе: Невозможна поставка.

Описание: A common feature of many approaches to modeling sensory statistics is an emphasis on capturing the ""average."" From early representations in the brain, to highly abstracted class categories in machine learning for classification tasks, central-tendency models based on the Gaussian distribution are a seemingly natural and obvious choice for modeling sensory data. However, insights from neuroscience, psychology, and computer vision suggest an alternate strategy: preferentially focusing representational resources on the extremes of the distribution of sensory inputs. The notion of treating extrema near a decision boundary as features is not necessarily new, but a comprehensive statistical theory of recognition based on extrema is only now just emerging in the computer vision literature. This book begins by introducing the statistical Extreme Value Theory (EVT) for visual recognition. In contrast to central-tendency modeling, it is hypothesized that distributions near decision boundaries form a more powerful model for recognition tasks by focusing coding resources on data that are arguably the most diagnostic features. EVT has several important properties: strong statistical grounding, better modeling accuracy near decision boundaries than Gaussian modeling, the ability to model asymmetric decision boundaries, and accurate prediction of the probability of an event beyond our experience. The second part of the book uses the theory to describe a new class of machine learning algorithms for decision making that are a measurable advance beyond the state-of-the-art. This includes methods for post-recognition score analysis, information fusion, multi-attribute spaces, and calibration of supervised machine learning algorithms.

Representations, Analysis and Recognition of Shape and Motion from Imaging Data

Автор: Boulbaba Ben Amor; Faten Chaieb; Faouzi Ghorbel
Название: Representations, Analysis and Recognition of Shape and Motion from Imaging Data
ISBN: 3319606530 ISBN-13(EAN): 9783319606538
Издательство: Springer
Рейтинг:
Цена: 8384.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: 3D Shape Registration and Comparison.- Face Analysis and Recognition.- Video and Motion Analysis.- 2D Shape Analysis.

Representations, Analysis and Recognition of Shape and Motion from Imaging Data

Автор: Liming Chen; Boulbaba Ben Amor; Faouzi Ghorbel
Название: Representations, Analysis and Recognition of Shape and Motion from Imaging Data
ISBN: 3030198154 ISBN-13(EAN): 9783030198152
Издательство: Springer
Рейтинг:
Цена: 9502.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the refereed proceedings of the 7th International Workshop on Representations, Analysis and Recognition of Shape and Motion from Imaging Data, RFMI 2017, held in Savoi, France, in December 2017.

The 8 revised full papers and 9 revised short papers presented were carefully reviewed and selected from 23 submissions. The papers are organized in topical sections on analyzing motion data; deep learning on image and shape data; 2D and 3D pattern classification; watermarking, segmentation and deformations.
Neural Networks for Pattern Recognition

Автор: Bishop, Christopher M.
Название: Neural Networks for Pattern Recognition
ISBN: 0198538642 ISBN-13(EAN): 9780198538646
Издательство: Oxford Academ
Рейтинг:
Цена: 13939.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is the first to provide a comprehensive account of neural networks from a statistical perspective. Its emphasis is on pattern recognition, which currently represents the area of greatest applicability for neural networks. By focusing on pattern recognition, the book provides a much more extensive treatment of many topics than is available in earlier books.

The Cambridge Handbook of Cognitive Linguistics

Автор: Dancygier
Название: The Cambridge Handbook of Cognitive Linguistics
ISBN: 1107118441 ISBN-13(EAN): 9781107118447
Издательство: Cambridge Academ
Рейтинг:
Цена: 24394.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A comprehensive survey of the quickly developing discipline of cognitive linguistics, its rich methodology, key results, and interdisciplinary context. Providing an accessible overview of research questions, basic concepts, and various theoretical approaches, the Handbook places linguistic facts in the context of gesture studies, neuroscience, computational approaches, and many other fields.

Graphs for Pattern Recognition: Infeasible Systems of Linear Inequalities

Автор: Damir Gainanov
Название: Graphs for Pattern Recognition: Infeasible Systems of Linear Inequalities
ISBN: 3110480131 ISBN-13(EAN): 9783110480139
Издательство: Walter de Gruyter
Рейтинг:
Цена: 18586.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This monograph deals with mathematical constructions that are foundational in such an important area of data mining as pattern recognition. By using combinatorial and graph theoretic techniques, a closer look is taken at infeasible systems of linear inequalities, whose generalized solutions act as building blocks of geometric decision rules for pattern recognition.Infeasible systems of linear inequalities prove to be a key object in pattern recognition problems described in geometric terms thanks to the committee method. Such infeasible systems of inequalities represent an important special subclass of infeasible systems of constraints with a monotonicity property - systems whose multi-indices of feasible subsystems form abstract simplicial complexes (independence systems), which are fundamental objects of combinatorial topology.The methods of data mining and machine learning discussed in this monograph form the foundation of technologies like big data and deep learning, which play a growing role in many areas of human-technology interaction and help to find solutions, better solutions and excellent solutions. Contents: PrefacePattern recognition, infeasible systems of linear inequalities, and graphsInfeasible monotone systems of constraintsComplexes, (hyper)graphs, and inequality systemsPolytopes, positive bases, and inequality systemsMonotone Boolean functions, complexes, graphs, and inequality systemsInequality systems, committees, (hyper)graphs, and alternative coversBibliographyList of notationIndex

Computer Age Statistical Inference

Автор: Bradley Efron and Trevor Hastie
Название: Computer Age Statistical Inference
ISBN: 1107149894 ISBN-13(EAN): 9781107149892
Издательство: Cambridge Academ
Рейтинг:
Цена: 9029.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.

Graph-Based Representations in Pattern Recognition

Автор: Pasquale Foggia; Cheng-Lin Liu; Mario Vento
Название: Graph-Based Representations in Pattern Recognition
ISBN: 3319589601 ISBN-13(EAN): 9783319589602
Издательство: Springer
Рейтинг:
Цена: 7685.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The papers discuss research results and applications in the intersection of pattern recognition, image analysis, graph theory, and also the application of graphs to pattern recognition problems in other fields like computational topology, graphic recognition systems and bioinformatics.

Graph-Based Representations in Pattern Recognition

Автор: Cheng-Lin Liu; Bin Luo; Walter G. Kropatsch; Jian
Название: Graph-Based Representations in Pattern Recognition
ISBN: 3319182234 ISBN-13(EAN): 9783319182230
Издательство: Springer
Рейтинг:
Цена: 7826.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The accepted papers cover diverse issues of graph-based methods and applications, with 7 in graph representation,15 in graph matching, 7 in graph clustering and classification, and 7 in graph-based applications.

Graph Based Representations in Pattern Recognition

Автор: Jean-Michel Jolion; Walter Kropatsch
Название: Graph Based Representations in Pattern Recognition
ISBN: 3211831215 ISBN-13(EAN): 9783211831212
Издательство: Springer
Рейтинг:
Цена: 12157.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Graph-based representation of images represents in a compact way the structure of a scene to be analyzed and allows for an easy manipulation of sub-parts or of relationships between parts. This book groups 14 papers in the subject areas of: hypergraphs, recognition, detection, matching, segmentation, implementation problems and representation.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия