Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Reproducible Research in Pattern Recognition, Bertrand Kerautret; Miguel Colom; Daniel Lopresti;


Варианты приобретения
Цена: 6986.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Bertrand Kerautret; Miguel Colom; Daniel Lopresti;
Название:  Reproducible Research in Pattern Recognition
ISBN: 9783030239862
Издательство: Springer
Классификация:




ISBN-10: 3030239861
Обложка/Формат: Soft cover
Страницы: 157
Вес: 0.27 кг.
Дата издания: 2019
Серия: Image Processing, Computer Vision, Pattern Recognition, and Graphics
Язык: English
Издание: 1st ed. 2019
Иллюстрации: 61 illustrations, color; 111 illustrations, black and white; x, 157 p. 172 illus., 61 illus. in color.
Размер: 234 x 156 x 9
Читательская аудитория: Professional & vocational
Основная тема: Computer Science
Подзаголовок: Second International Workshop, RRPR 2018, Beijing, China, August 20, 2018, Revised Selected Papers
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание:
This book constitutes the thoroughly refereed post-workshop proceedings of the Second International Workshop on Reproducible Research in Pattern Recognition, RRPR 2018, in Beijing, China in August 2018.
The 8 revised full papers, presented together 6 short papers, were carefully reviewed and selected from 14 submissions. This year the workshop did focus on Digital Geometry and Mathematical Morphology.
The first track 1 on RR Framework was dedicated to the general topics of Reproducible Research in Computer Science
with a potential link to Image Processing and Pattern Recognition. In the second track 2 the authors described their works in terms of Reproducible Research.

Дополнительное описание: Reproducible Research.- Reproducibility.- Pattern Recognition.- Image Processing.- Image Analysis.- Computer Vision.- Digital Geometry.- Semi-supervised Learning.- Shape analysis.- Evaluation Framework.- Document Image Analysis.- Image Denoising.- Robust



Linear Algebra and Learning from Data

Автор: Strang Gilbert
Название: Linear Algebra and Learning from Data
ISBN: 0692196382 ISBN-13(EAN): 9780692196380
Издательство: Cambridge Academ
Рейтинг:
Цена: 9978.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Linear algebra and the foundations of deep learning, together at last! From Professor Gilbert Strang, acclaimed author of Introduction to Linear Algebra, comes Linear Algebra and Learning from Data, the first textbook that teaches linear algebra together with deep learning and neural nets. This readable yet rigorous textbook contains a complete course in the linear algebra and related mathematics that students need to know to get to grips with learning from data. Included are: the four fundamental subspaces, singular value decompositions, special matrices, large matrix computation techniques, compressed sensing, probability and statistics, optimization, the architecture of neural nets, stochastic gradient descent and backpropagation.

The Cambridge Handbook of Cognitive Linguistics

Автор: Dancygier
Название: The Cambridge Handbook of Cognitive Linguistics
ISBN: 1107118441 ISBN-13(EAN): 9781107118447
Издательство: Cambridge Academ
Рейтинг:
Цена: 24394.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A comprehensive survey of the quickly developing discipline of cognitive linguistics, its rich methodology, key results, and interdisciplinary context. Providing an accessible overview of research questions, basic concepts, and various theoretical approaches, the Handbook places linguistic facts in the context of gesture studies, neuroscience, computational approaches, and many other fields.

Introduction to Applied Linear Algebra

Автор: Boyd Stephen
Название: Introduction to Applied Linear Algebra
ISBN: 1316518965 ISBN-13(EAN): 9781316518960
Издательство: Cambridge Academ
Рейтинг:
Цена: 6811.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A groundbreaking introductory textbook covering the linear algebra methods needed for data science and engineering applications. It combines straightforward explanations with numerous practical examples and exercises from data science, machine learning and artificial intelligence, signal and image processing, navigation, control, and finance.

Applications of Advanced Machine Intelligence in Computer Vision and Object Recognition: Emerging Research and Opportunities

Автор: Shouvik Chakraborty, Kalyani Mali
Название: Applications of Advanced Machine Intelligence in Computer Vision and Object Recognition: Emerging Research and Opportunities
ISBN: 1799827372 ISBN-13(EAN): 9781799827375
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 20236.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Computer vision and object recognition are two technological methods that are frequently used in various professional disciplines. In order to maintain high levels of quality and accuracy of services in these sectors, continuous enhancements and improvements are needed. The implementation of artificial intelligence and machine learning has assisted in the development of digital imaging, yet proper research on the applications of these advancing technologies is lacking.

Applications of Advanced Machine Intelligence in Computer Vision and Object Recognition: Emerging Research and Opportunities explores the theoretical and practical aspects of modern advancements in digital image analysis and object detection as well as its applications within healthcare, security, and engineering fields. Featuring coverage on a broad range of topics such as disease detection, adaptive learning, and automated image segmentation, this book is ideally designed for engineers, physicians, researchers, academicians, practitioners, scientists, industry professionals, scholars, and students seeking research on the current developments in object recognition using artificial intelligence.

Applications of Advanced Machine Intelligence in Computer Vision and Object Recognition: Emerging Research and Opportunities

Автор: Shouvik Chakraborty, Kalyani Mali
Название: Applications of Advanced Machine Intelligence in Computer Vision and Object Recognition: Emerging Research and Opportunities
ISBN: 1799827364 ISBN-13(EAN): 9781799827368
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 26195.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Computer vision and object recognition are two technological methods that are frequently used in various professional disciplines. In order to maintain high levels of quality and accuracy of services in these sectors, continuous enhancements and improvements are needed. The implementation of artificial intelligence and machine learning has assisted in the development of digital imaging, yet proper research on the applications of these advancing technologies is lacking.

Applications of Advanced Machine Intelligence in Computer Vision and Object Recognition: Emerging Research and Opportunities explores the theoretical and practical aspects of modern advancements in digital image analysis and object detection as well as its applications within healthcare, security, and engineering fields. Featuring coverage on a broad range of topics such as disease detection, adaptive learning, and automated image segmentation, this book is ideally designed for engineers, physicians, researchers, academicians, practitioners, scientists, industry professionals, scholars, and students seeking research on the current developments in object recognition using artificial intelligence.

Pattern Recognition and Data Mining

Автор: Sameer Singh; Maneesha Singh; Chid Apte; Petra Per
Название: Pattern Recognition and Data Mining
ISBN: 3540287574 ISBN-13(EAN): 9783540287575
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Constitutes the refereed proceedings of the Third International Conference on Advances in Pattern Recognition, ICAPR 2005, held in Bath, UK in August 2005.

Dynamic Fuzzy Pattern Recognition with Applications to Finance and Engineering

Автор: Larisa Angstenberger
Название: Dynamic Fuzzy Pattern Recognition with Applications to Finance and Engineering
ISBN: 9048157757 ISBN-13(EAN): 9789048157754
Издательство: Springer
Рейтинг:
Цена: 23058.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Dynamic Fuzzy Pattern Recognition with Applications to Finance and Engineering focuses on fuzzy clustering methods which have proven to be very powerful in pattern recognition and considers the entire process of dynamic pattern recognition.

Pattern Recognition and Artificial Intelligence

Автор: Chawki Djeddi; Akhtar Jamil; Imran Siddiqi
Название: Pattern Recognition and Artificial Intelligence
ISBN: 3030375471 ISBN-13(EAN): 9783030375478
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the refereed proceedings of the Third Mediterranean Conference on Pattern Recognition and Artificial Intelligence, MedPRAI 2019, held in Istanbul, Turkey, in December 2019. The 18 revised full papers and one short paper presented were carefully selected from 54 submissions.

Reproducible Research in Pattern Recognition

Автор: Bertrand Kerautret; Miguel Colom; Pascal Monasse
Название: Reproducible Research in Pattern Recognition
ISBN: 3319564137 ISBN-13(EAN): 9783319564135
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the thoroughly refereed post-proceedings of the First International Workshop on Reproducible Research in Pattern Recognition, RRPR 2016, held in Cancun, Mexico, in December 2016. The 12 revised full papers, among them 2 invited talks, presented were carefully reviewed and selected from 16 submissions.

Computer Age Statistical Inference

Автор: Bradley Efron and Trevor Hastie
Название: Computer Age Statistical Inference
ISBN: 1107149894 ISBN-13(EAN): 9781107149892
Издательство: Cambridge Academ
Рейтинг:
Цена: 9029.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.

Understanding Machine Learning

Автор: Shalev-Shwartz
Название: Understanding Machine Learning
ISBN: 1107057132 ISBN-13(EAN): 9781107057135
Издательство: Cambridge Academ
Рейтинг:
Цена: 11194.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. This book explains the principles behind the automated learning approach and the considerations underlying its usage. The authors explain the `hows` and `whys` of machine-learning algorithms, making the field accessible to both students and practitioners.

Extreme Value Theory-Based Methods for Visual Recognition

Автор: Walter J. Scheirer
Название: Extreme Value Theory-Based Methods for Visual Recognition
ISBN: 1627057005 ISBN-13(EAN): 9781627057004
Издательство: Turpin
Рейтинг:
Цена: 10340.00 р.
Наличие на складе: Невозможна поставка.

Описание: A common feature of many approaches to modeling sensory statistics is an emphasis on capturing the ""average."" From early representations in the brain, to highly abstracted class categories in machine learning for classification tasks, central-tendency models based on the Gaussian distribution are a seemingly natural and obvious choice for modeling sensory data. However, insights from neuroscience, psychology, and computer vision suggest an alternate strategy: preferentially focusing representational resources on the extremes of the distribution of sensory inputs. The notion of treating extrema near a decision boundary as features is not necessarily new, but a comprehensive statistical theory of recognition based on extrema is only now just emerging in the computer vision literature. This book begins by introducing the statistical Extreme Value Theory (EVT) for visual recognition. In contrast to central-tendency modeling, it is hypothesized that distributions near decision boundaries form a more powerful model for recognition tasks by focusing coding resources on data that are arguably the most diagnostic features. EVT has several important properties: strong statistical grounding, better modeling accuracy near decision boundaries than Gaussian modeling, the ability to model asymmetric decision boundaries, and accurate prediction of the probability of an event beyond our experience. The second part of the book uses the theory to describe a new class of machine learning algorithms for decision making that are a measurable advance beyond the state-of-the-art. This includes methods for post-recognition score analysis, information fusion, multi-attribute spaces, and calibration of supervised machine learning algorithms.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия