High Dimensional Probability VIII, Nathael Gozlan; Rafa? Lata?a; Karim Lounici; Moksh
Автор: Kai Lai Chung Название: A Course in Probability Theory, Revised Edition, ISBN: 0121741516 ISBN-13(EAN): 9780121741518 Издательство: Elsevier Science Рейтинг: Цена: 12462.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book is designed for undergraduate programs and students and can also be used as a first-year graduate text in probability. It offers a broad perspective, building on the synopsis of measure and integration offered in Chapter two.
Автор: Ernst Eberlein; Marjorie Hahn Название: High Dimensional Probability ISBN: 3034897901 ISBN-13(EAN): 9783034897907 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Roughly speaking, before 1970, the Gaussian processes that were studied were indexed by a subset of Euclidean space, mostly with dimension at most three. The index set was no longer considered as a subset of Euclidean space, but simply as a metric space with the metric canonically induced by the process.
Автор: Joseph K. Blitzstein, Jessica Hwang Название: Introduction to Probability, Second Edition ISBN: 1138369918 ISBN-13(EAN): 9781138369917 Издательство: Taylor&Francis Рейтинг: Цена: 11176.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Assumes one-semester of calculus. "Stories" make distributions (Normal, Binomial, Poisson that are widely-used in statistics) easier to remember, understand. Many books write down formulas without explaining clearly why these particular distributions are important or how they are all connected.
Автор: Bradley Efron and Trevor Hastie Название: Computer Age Statistical Inference ISBN: 1107149894 ISBN-13(EAN): 9781107149892 Издательство: Cambridge Academ Рейтинг: Цена: 9029.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.
Автор: Koch Название: Analysis of Multivariate and High-Dimensional Data ISBN: 0521887933 ISBN-13(EAN): 9780521887939 Издательство: Cambridge Academ Рейтинг: Цена: 10613.00 р. Наличие на складе: Поставка под заказ.
Описание: `Big data` poses challenges that require both classical multivariate methods and modern machine-learning techniques. This coherent treatment integrates theory with data analysis, visualisation and interpretation of the analysis. Problems, data sets and MATLAB (R) code complete the package. It is suitable for master`s/graduate students in statistics and working scientists in data-rich disciplines.
Автор: Giraud Название: Introduction to High-Dimensional Statistics ISBN: 1482237946 ISBN-13(EAN): 9781482237948 Издательство: Taylor&Francis Рейтинг: Цена: 9645.00 р. Наличие на складе: Нет в наличии.
Описание: Ever-greater computing technologies have given rise to an exponentially growing volume of data. Today massive data sets (with potentially thousands of variables) play an important role in almost every branch of modern human activity, including networks, finance, and genetics. However, analyzing such data has presented a challenge for statisticians and data analysts and has required the development of new statistical methods capable of separating the signal from the noise. Introduction to High-Dimensional Statistics is a concise guide to state-of-the-art models, techniques, and approaches for handling high-dimensional data. The book is intended to expose the reader to the key concepts and ideas in the most simple settings possible while avoiding unnecessary technicalities. Offering a succinct presentation of the mathematical foundations of high-dimensional statistics, this highly accessible text: Describes the challenges related to the analysis of high-dimensional data Covers cutting-edge statistical methods including model selection, sparsity and the lasso, aggregation, and learning theory Provides detailed exercises at the end of every chapter with collaborative solutions on a wikisite Illustrates concepts with simple but clear practical examples Introduction to High-Dimensional Statistics is suitable for graduate students and researchers interested in discovering modern statistics for massive data. It can be used as a graduate text or for self-study.
Автор: Houdr? Название: High Dimensional Probability VII ISBN: 3319405179 ISBN-13(EAN): 9783319405179 Издательство: Springer Рейтинг: Цена: 20263.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This volume collects selected papers from the 7th High Dimensional Probability meeting held at the Institut d'?tudes Scientifiques de Carg?se (IESC) in Corsica, France.High Dimensional Probability (HDP) is an area of mathematics that includes the study of probability distributions and limit theorems in infinite-dimensional spaces such as Hilbert spaces and Banach spaces. The most remarkable feature of this area is that it has resulted in the creation of powerful new tools and perspectives, whose range of application has led to interactions with other subfields of mathematics, statistics, and computer science. These include random matrices, nonparametric statistics, empirical processes, statistical learning theory, concentration of measure phenomena, strong and weak approximations, functional estimation, combinatorial optimization, and random graphs.The contributions in this volume show that HDP theory continues to thrive and develop new tools, methods, techniques and perspectives to analyze random phenomena.
Описание: This monograph is devoted to random walk based stochastic algorithms for solving high-dimensional boundary value problems of mathematical physics and chemistry. It includes Monte Carlo methods where the random walks live not only on the boundary, but also inside the domain. A variety of examples from capacitance calculations to electron dynamics in semiconductors are discussed to illustrate the viability of the approach.The book is written for mathematicians who work in the field of partial differential and integral equations, physicists and engineers dealing with computational methods and applied probability, for students and postgraduates studying mathematical physics and numerical mathematics. Contents: IntroductionRandom walk algorithms for solving integral equationsRandom walk-on-boundary algorithms for the Laplace equationWalk-on-boundary algorithms for the heat equationSpatial problems of elasticityVariants of the random walk on boundary for solving stationary potential problemsSplitting and survival probabilities in random walk methods and applicationsA random WOS-based KMC method for electron-hole recombinationsMonte Carlo methods for computing macromolecules properties and solving related problemsBibliography
Автор: Christian Houdr?; David M. Mason; Jan Rosi?ski; Jo Название: High Dimensional Probability VI ISBN: 3034807996 ISBN-13(EAN): 9783034807999 Издательство: Springer Рейтинг: Цена: 16769.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: These include random matrix theory, nonparametric statistics, empirical process theory, statistical learning theory, concentration of measure phenomena, strong and weak approximations, distribution function estimation in high dimensions, combinatorial optimization, and random graph theory.
Автор: Joergen Hoffmann-Joergensen; Michael B. Marcus; Jo Название: High Dimensional Probability III ISBN: 3764321873 ISBN-13(EAN): 9783764321871 Издательство: Springer Рейтинг: Цена: 22359.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The title High Dimensional Probability is used to describe the many tributaries of research on Gaussian processes and probability in Banach spaces that started in the early 1970s.
Автор: Evarist Gin?; David M. Mason; Jon A. Wellner Название: High Dimensional Probability II ISBN: 1461271118 ISBN-13(EAN): 9781461271116 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Joergen Hoffmann-Joergensen; Michael B. Marcus; Jo Название: High Dimensional Probability III ISBN: 3034894236 ISBN-13(EAN): 9783034894234 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The title High Dimensional Probability is used to describe the many tributaries of research on Gaussian processes and probability in Banach spaces that started in the early 1970s.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru