Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Interval-Valued Methods in Classifications and Decisions, Urszula Bentkowska


Варианты приобретения
Цена: 13974.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Urszula Bentkowska
Название:  Interval-Valued Methods in Classifications and Decisions
ISBN: 9783030129262
Издательство: Springer
Классификация:



ISBN-10: 3030129268
Обложка/Формат: Hardcover
Страницы: 163
Вес: 0.44 кг.
Дата издания: 2020
Серия: Studies in Fuzziness and Soft Computing
Язык: English
Издание: 1st ed. 2020
Иллюстрации: 100 tables, color; 5 illustrations, color; 7 illustrations, black and white; xv, 163 p. 12 illus., 5 illus. in color.
Размер: 234 x 156 x 11
Читательская аудитория: Professional & vocational
Основная тема: Engineering
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book describes novel algorithms based on interval-valued fuzzy methods that are expected to improve classification and decision-making processes under incomplete or imprecise information. At first, it introduces interval-valued fuzzy sets. It then discusses new methods for aggregation on interval-valued settings, and the most common properties of interval-valued aggregation operators. It then presents applications such as decision making using interval-valued aggregation, and classification in case of missing values. Interesting applications of the developed algorithms to DNA microarray analysis and in medical decision support systems are shown. The book is intended not only as a timely report for the community working on fuzzy sets and their extensions but also for researchers and practitioners dealing with the problems of uncertain or imperfect information.
Дополнительное описание:
Fuzzy Sets and their Extensions.- Aggregation in Interval-valued Settings.- Decision Making using Interval-valued Aggregation.- Optimization Problem of k-NN classi?er in DNA Microarray Methods.- Interval-valued Methods in Medical Decision Support Sys



EEG Signal Analysis and Classification

Автор: Siuly Siuly; Yan Li; Yanchun Zhang
Название: EEG Signal Analysis and Classification
ISBN: 3319476521 ISBN-13(EAN): 9783319476520
Издательство: Springer
Рейтинг:
Цена: 19564.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents advanced methodologies in two areas related to electroencephalogram (EEG) signals: detection of epileptic seizures and identification of mental states in brain computer interface (BCI) systems.

Real-Time Object Measurement and Classification

Автор: Anil K. Jain
Название: Real-Time Object Measurement and Classification
ISBN: 3642833276 ISBN-13(EAN): 9783642833274
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Proceedings of the NATO Advanced Research Workshop on Real- Time Object and Environment Measurement and Qualification, held in Maratea, Italy, August 31 - September 3, 1987

Integration of Modern Taxonomic Methods For Penicillium and Aspergillus Classification

Название: Integration of Modern Taxonomic Methods For Penicillium and Aspergillus Classification
ISBN: 036739796X ISBN-13(EAN): 9780367397968
Издательство: Taylor&Francis
Рейтинг:
Цена: 9798.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Many species of penicillium and aspergillus are key in biotechnology, food, medicine, biodeterioration and other applied fields, so a practical and stable taxonomy is of vital importance. Developments in science and technology mean that taxonomic classification is no longer confined to classical morphological concepts, and the integration of molecular, physiological and biochemical methods now plays an important role in understanding the classification of these fungi. International experts contribute their expertise, providing value to researchers and professionals in mycology, biotechnology, medicine and regulatory agencies interested in the identification of these fungi.

Integration of Modern Taxonomic Methods For Penicillium and Aspergillus Classification

Автор: Samson
Название: Integration of Modern Taxonomic Methods For Penicillium and Aspergillus Classification
ISBN: 9058231593 ISBN-13(EAN): 9789058231598
Издательство: Taylor&Francis
Рейтинг:
Цена: 33686.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: These are the proceedings from the International Workshop on Penicillium and Aspergillus. The theme was the systematics of these fungi. The taxonomy has developed from morphological concepts, and these papers consider the integration of molecular, physiological and biochemical methods.

Models and Methods for Interval-Valued Cooperative Games in Economic Management

Автор: Deng-Feng Li
Название: Models and Methods for Interval-Valued Cooperative Games in Economic Management
ISBN: 3319289969 ISBN-13(EAN): 9783319289960
Издательство: Springer
Рейтинг:
Цена: 11179.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book proposes several commonly used interval-valued solution concepts of interval-valued cooperative games with transferable utility.

Applying Machine Learning for Automated Classification of Biomedical Data in Subject-Independent Settings

Автор: Thuy T. Pham
Название: Applying Machine Learning for Automated Classification of Biomedical Data in Subject-Independent Settings
ISBN: 3030075184 ISBN-13(EAN): 9783030075187
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book describes efforts to improve subject-independent automated classification techniques using a better feature extraction method and a more efficient model of classification. It evaluates three popular saliency criteria for feature selection, showing that they share common limitations, including time-consuming and subjective manual de-facto standard practice, and that existing automated efforts have been predominantly used for subject dependent setting. It then proposes a novel approach for anomaly detection, demonstrating its effectiveness and accuracy for automated classification of biomedical data, and arguing its applicability to a wider range of unsupervised machine learning applications in subject-independent settings.

Rough Set–Based Classification Systems

Автор: Robert K. Nowicki
Название: Rough Set–Based Classification Systems
ISBN: 3030038947 ISBN-13(EAN): 9783030038946
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This book demonstrates an original concept for implementing the rough set theory in the construction of decision-making systems. It addresses three types of decisions, including those in which the information or input data is insufficient. Though decision-making and classification in cases with missing or inaccurate data is a common task, classical decision-making systems are not naturally adapted to it. One solution is to apply the rough set theory proposed by Prof. Pawlak.
The proposed classifiers are applied and tested in two configurations: The first is an iterative mode in which a single classification system requests completion of the input data until an unequivocal decision (classification) is obtained. It allows us to start classification processes using very limited input data and supplementing it only as needed, which limits the cost of obtaining data. The second configuration is an ensemble mode in which several rough set-based classification systems achieve the unequivocal decision collectively, even though the systems cannot separately deliver such results.
Uncertainty Data in Interval-Valued Fuzzy Set Theory

Автор: Barbara P?kala
Название: Uncertainty Data in Interval-Valued Fuzzy Set Theory
ISBN: 3030067432 ISBN-13(EAN): 9783030067434
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Поставка под заказ.

Описание: This book offers an introduction to fuzzy sets theory and their operations, with a special focus on aggregation and negation functions. Particular attention is given to interval-valued fuzzy sets and Atanassov’s intuitionistic fuzzy sets and their use in uncertainty models involving imperfect or unknown information. The theory and application of interval-values fuzzy sets to various decision making problems represent the central core of this book, which describes in detail aggregation operators and their use with imprecise data represented as intervals. Interval-valued fuzzy relations, compatibility measures of interval and the transitivity property are thoroughly covered. With its good balance between theoretical considerations and applications of originally developed algorithms to real-world problem, the book offers a timely, inspiring guide to mathematicians and engineers developing new decision making models or implementing/applying existing ones to a wide range of applications involving imprecise or incomplete data.

Analysis and Classification of EEG Signals for Brain–Computer Interfaces

Автор: Szczepan Paszkiel
Название: Analysis and Classification of EEG Signals for Brain–Computer Interfaces
ISBN: 3030305805 ISBN-13(EAN): 9783030305802
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book addresses the problem of EEG signal analysis and the need to classify it for practical use in many sample implementations of brain-computer interfaces.

Biological Metaphor and Cladistic Classification

Автор: Hoenigswald Henry M., Wiener Linda F.
Название: Biological Metaphor and Cladistic Classification
ISBN: 0812280148 ISBN-13(EAN): 9780812280142
Издательство: Marston Book Services
Цена: 13959.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The dynamic aspect of biological systems--the birth, growth, and death of individual organisms, the evolution of one form into another over time--has formed the basis for metaphors used in many fields for both artistic and heuristic purposes. Cladistic classification uses a tree whose branch points are based on the possession of derived or relatively recent characteristics, rather than primitive ones.

Machine Learning Models and Algorithms for Big Data Classification

Автор: Shan Suthaharan
Название: Machine Learning Models and Algorithms for Big Data Classification
ISBN: 1489978526 ISBN-13(EAN): 9781489978523
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents machine learning models and algorithms to address big data classification problems. The first part mainly focuses on the topics that are needed to help analyze and understand data and big data. The third part presents the topics required to understand and select machine learning techniques to classify big data.

Support Vector Machines and Evolutionary Algorithms for Classification

Автор: Catalin Stoean; Ruxandra Stoean
Название: Support Vector Machines and Evolutionary Algorithms for Classification
ISBN: 3319382438 ISBN-13(EAN): 9783319382432
Издательство: Springer
Рейтинг:
Цена: 15672.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: When discussing classification, support vector machines are known to be a capable and efficient technique to learn and predict with high accuracy within a quick time frame.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия