Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Supervised and Unsupervised Learning for Data Science, Michael W. Berry; Azlinah Mohamed; Bee Wah Yap


Варианты приобретения
Цена: 13974.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Michael W. Berry; Azlinah Mohamed; Bee Wah Yap
Название:  Supervised and Unsupervised Learning for Data Science
ISBN: 9783030224745
Издательство: Springer
Классификация:





ISBN-10: 3030224740
Обложка/Формат: Hardcover
Страницы: 187
Вес: 0.47 кг.
Дата издания: 2020
Серия: Unsupervised and Semi-Supervised Learning
Язык: English
Издание: 1st ed. 2020
Иллюстрации: 43 tables, color; 45 illustrations, color; 10 illustrations, black and white; viii, 187 p. 55 illus., 45 illus. in color.
Размер: 234 x 156 x 13
Читательская аудитория: Professional & vocational
Основная тема: Engineering
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book covers the state of the art in learning algorithms with an inclusion of semi-supervised methods to provide a broad scope of clustering and classification solutions for big data applications. Case studies and best practices are included along with theoretical models of learning for a comprehensive reference to the field. The book is organized into eight chapters that cover the following topics: discretization, feature extraction and selection, classification, clustering, topic modeling, graph analysis and applications. Practitioners and graduate students can use the volume as an important reference for their current and future research and faculty will find the volume useful for assignments in presenting current approaches to unsupervised and semi-supervised learning in graduate-level seminar courses. The book is based on selected, expanded papers from the Fourth International Conference on Soft Computing in Data Science (2018).Includes new advances in clustering and classification using semi-supervised and unsupervised learning;Address new challenges arising in feature extraction and selection using semi-supervised and unsupervised learning;Features applications from healthcare, engineering, and text/social media mining that exploit techniques from semi-supervised and unsupervised learning.
Дополнительное описание: Chapter1: A Systematic Review on Supervised & Unsupervised Machine Learning Algorithms for Data Science.- Chapter2: Overview of One-Pass and Discard-After-Learn Concepts for Classification and Clustering in Streaming Environment with Constraints.- Chapter



Temporal Data Mining via Unsupervised Ensemble Learning

Автор: Yang Yun
Название: Temporal Data Mining via Unsupervised Ensemble Learning
ISBN: 0128116544 ISBN-13(EAN): 9780128116548
Издательство: Elsevier Science
Рейтинг:
Цена: 7241.00 р.
Наличие на складе: Поставка под заказ.

Описание: Temporal Data Mining via Unsupervised Ensemble Learning provides the principle knowledge of temporal data mining in association with unsupervised ensemble learning and the fundamental problems of temporal data clustering from different perspectives. By providing three proposed ensemble approaches of temporal data clustering, this book presents a practical focus of fundamental knowledge and techniques, along with a rich blend of theory and practice. . Furthermore, the book includes illustrations of the proposed approaches based on data and simulation experiments to demonstrate all methodologies, and is a guide to the proper usage of these methods. As there is nothing universal that can solve all problems, it is important to understand the characteristics of both clustering algorithms and the target temporal data so the correct approach can be selected for a given clustering problem. . Scientists, researchers, and data analysts working with machine learning and data mining will benefit from this innovative book, as will undergraduate and graduate students following courses in computer science, engineering, and statistics.

Dimensionality Reduction with Unsupervised Nearest Neighbors

Автор: Oliver Kramer
Название: Dimensionality Reduction with Unsupervised Nearest Neighbors
ISBN: 3662518953 ISBN-13(EAN): 9783662518953
Издательство: Springer
Рейтинг:
Цена: 16977.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is devoted to a novel approach for dimensionality reduction based on the famous nearest neighbor method that is a powerful classification and regression approach.

Fusion Methods for Unsupervised Learning Ensembles

Автор: Bruno Baruque
Название: Fusion Methods for Unsupervised Learning Ensembles
ISBN: 3642423280 ISBN-13(EAN): 9783642423284
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book examines the potential of the ensemble meta-algorithm by describing and testing a technique based on the combination of ensembles and statistical PCA that is able to determine the presence of outliers in high-dimensional data sets.

Natural Computing for Unsupervised Learning

Автор: Xiangtao Li; Ka-Chun Wong
Название: Natural Computing for Unsupervised Learning
ISBN: 3030075087 ISBN-13(EAN): 9783030075088
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Поставка под заказ.

Описание: This book highlights recent research advances in unsupervised learning using natural computing techniques such as artificial neural networks, evolutionary algorithms, swarm intelligence, artificial immune systems, artificial life, quantum computing, DNA computing, and others. The book also includes information on the use of natural computing techniques for unsupervised learning tasks. It features several trending topics, such as big data scalability, wireless network analysis, engineering optimization, social media, and complex network analytics. It shows how these applications have triggered a number of new natural computing techniques to improve the performance of unsupervised learning methods. With this book, the readers can easily capture new advances in this area with systematic understanding of the scope in depth. Readers can rapidly explore new methods and new applications at the junction between natural computing and unsupervised learning. Includes advances on unsupervised learning using natural computing techniquesReports on topics in emerging areas such as evolutionary multi-objective unsupervised learning Features natural computing techniques such as evolutionary multi-objective algorithms and many-objective swarm intelligence algorithms

Supervised and Unsupervised Ensemble Methods and their Applications

Автор: Oleg Okun
Название: Supervised and Unsupervised Ensemble Methods and their Applications
ISBN: 3540789804 ISBN-13(EAN): 9783540789802
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Ensembles of Clustering Methods and Their Applications.- Cluster Ensemble Methods: from Single Clusterings to Combined Solutions.- Random Subspace Ensembles for Clustering Categorical Data.- Ensemble Clustering with a Fuzzy Approach.- Collaborative Multi-Strategical Clustering for Object-Oriented Image Analysis.- Ensembles of Classification Methods and Their Applications.- Intrusion Detection in Computer Systems Using Multiple Classifier Systems.- Ensembles of Nearest Neighbors for Gene Expression Based Cancer Classification.- Multivariate Time Series Classification via Stacking of Univariate Classifiers.- Gradient Boosting GARCH and Neural Networks for Time Series Prediction.- Cascading with VDM and Binary Decision Trees for Nominal Data.- Erratum.

Sampling Techniques for Supervised or Unsupervised Tasks

Автор: Fr?d?ric Ros; Serge Guillaume
Название: Sampling Techniques for Supervised or Unsupervised Tasks
ISBN: 3030293483 ISBN-13(EAN): 9783030293482
Издательство: Springer
Рейтинг:
Цена: 16070.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book describes in detail sampling techniques that can be used for unsupervised and supervised cases, with a focus on sampling techniques for machine learning algorithms. It covers theory and models of sampling methods for managing scalability and the “curse of dimensionality”, their implementations, evaluations, and applications. A large part of the book is dedicated to database comprising standard feature vectors, and a special section is reserved to the handling of more complex objects and dynamic scenarios. The book is ideal for anyone teaching or learning pattern recognition and interesting teaching or learning pattern recognition and is interested in the big data challenge. It provides an accessible introduction to the ?eld and discusses the state of the art concerning sampling techniques for supervised and unsupervised task.Provides a comprehensive description of sampling techniques for unsupervised and supervised tasks;Describe implementation and evaluation of algorithms that simultaneously manage scalable problems and curse of dimensionality;Addresses the role of sampling in dynamic scenarios, sampling when dealing with complex objects, and new challenges arising from big data. 'This book represents a timely collection of state-of-the art research of sampling techniques, suitable for anyone who wants to become more familiar with these helpful techniques for tackling the big data challenge.'M. Emre Celebi, Ph.D., Professor and Chair, Department of Computer Science, University of Central Arkansas

'In science the difficulty is not to have ideas, but it is to make them work'From Carlo Rovelli
Applications of Supervised and Unsupervised Ensemble Methods

Автор: Oleg Okun
Название: Applications of Supervised and Unsupervised Ensemble Methods
ISBN: 3642039987 ISBN-13(EAN): 9783642039980
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Expanding upon presentations at last year`s SUEMA (Supervised and Unsupervised Ensemble Methods and Applications) meeting, this volume explores recent developments in the field. Useful examples act as a guide for practitioners in computational intelligence.

Hands-On Unsupervised Learning Using Python: How to Build Applied Machine Learning Solutions from Unlabeled Data

Автор: Patel Ankur A.
Название: Hands-On Unsupervised Learning Using Python: How to Build Applied Machine Learning Solutions from Unlabeled Data
ISBN: 1492035645 ISBN-13(EAN): 9781492035640
Издательство: Wiley
Рейтинг:
Цена: 10136.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Many industry experts consider unsupervised learning the next frontier in artificial intelligence, one that may hold the key to general artificial intelligence. Author Ankur Patel shows you how to apply unsupervised learning using two simple, production-ready Python frameworks: Scikit-learn and TensorFlow using Keras.

Unsupervised Classification

Автор: Sanghamitra Bandyopadhyay; Sriparna Saha
Название: Unsupervised Classification
ISBN: 3642428363 ISBN-13(EAN): 9783642428364
Издательство: Springer
Рейтинг:
Цена: 6981.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book offers a theoretical analysis of symmetry-based clustering techniques. It includes extensive real-world applications in data mining, remote sensing imaging, MR brain imaging, gene expression data analysis, and face detection.

Dimensionality Reduction with Unsupervised Nearest Neighbors

Автор: Oliver Kramer
Название: Dimensionality Reduction with Unsupervised Nearest Neighbors
ISBN: 3642386512 ISBN-13(EAN): 9783642386510
Издательство: Springer
Рейтинг:
Цена: 19591.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is devoted to a novel approach for dimensionality reduction based on the famous nearest neighbor method that is a powerful classification and regression approach.

Unsupervised Feature Extraction Applied to Bioinformatics

Автор: Y-h. Taguchi
Название: Unsupervised Feature Extraction Applied to Bioinformatics
ISBN: 3030224554 ISBN-13(EAN): 9783030224554
Издательство: Springer
Рейтинг:
Цена: 22359.00 р.
Наличие на складе: Поставка под заказ.

Описание: This book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tenor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics.

Allows readers to analyze data sets with small samples and many features;Provides a fast algorithm, based upon linear algebra, to analyze big data;Includes several applications to multi-view data analyses, with a focus on bioinformatics.
Face Image Analysis by Unsupervised Learning

Автор: Marian Stewart Bartlett
Название: Face Image Analysis by Unsupervised Learning
ISBN: 1461356539 ISBN-13(EAN): 9781461356530
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Face Image Analysis by Unsupervised Learning explores adaptive approaches to image analysis.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия