Автор: Kavian & Ghassemlooy Название: Intelligent Systems For Optical Networks Design ISBN: 1466636521 ISBN-13(EAN): 9781466636521 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 28413.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: As the increased demand for high-speed communication creates an interest in the development of optical networks, intelligent all optical networks have emerged as the next generation for reliable and fast connections. <br><br><em>Intelligent Systems for Optical Networks Design: Advancing Techniques</em> is a comprehensive collection of research focused on theoretical and practical aspects of intelligent methodologies as applied to real world problems. This reference source is useful for research and development engineers, scholars, and students interested in the latest development in the area of intelligent systems for optical networks design.
Автор: Aliev Rafik Aziz Название: Arithmetic of Z-Numbers ISBN: 9814675288 ISBN-13(EAN): 9789814675284 Издательство: World Scientific Publishing Рейтинг: Цена: 16632.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Real-world information is imperfect and is usually described in natural language (NL). Moreover, this information is often partially reliable and a degree of reliability is also expressed in NL.
Автор: Goldberg Yoav Название: Neural Network Methods in Natural Language Processing ISBN: 1627052984 ISBN-13(EAN): 9781627052986 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 11504.00 р. Наличие на складе: Нет в наличии.
Описание: Neural networks are a family of powerful machine learning models. This book focuses on the application of neural network models to natural language data. The first half of the book (Parts I and II) covers the basics of supervised machine learning and feed-forward neural networks, the basics of working with machine learning over language data, and the use of vector-based rather than symbolic representations for words. It also covers the computation-graph abstraction, which allows to easily define and train arbitrary neural networks, and is the basis behind the design of contemporary neural network software libraries.The second part of the book (Parts III and IV) introduces more specialized neural network architectures, including 1D convolutional neural networks, recurrent neural networks, conditioned-generation models, and attention-based models. These architectures and techniques are the driving force behind state-of-the-art algorithms for machine translation, syntactic parsing, and many other applications. Finally, we also discuss tree-shaped networks, structured prediction, and the prospects of multi-task learning.
Автор: by Shashi Narayan, Claire Gardent Название: Deep Learning Approaches to Text Production ISBN: 1681737604 ISBN-13(EAN): 9781681737607 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 14276.00 р. Наличие на складе: Нет в наличии.
Описание: Text production has many applications. It is used, for instance, to generate dialogue turns from dialogue moves, verbalise the content of knowledge bases, or generate English sentences from rich linguistic representations, such as dependency trees or abstract meaning representations. Text production is also at work in text-to-text transformations such as sentence compression, sentence fusion, paraphrasing, sentence (or text) simplification, and text summarisation. This book offers an overview of the fundamentals of neural models for text production. In particular, we elaborate on three main aspects of neural approaches to text production: how sequential decoders learn to generate adequate text, how encoders learn to produce better input representations, and how neural generators account for task-specific objectives. Indeed, each text-production task raises a slightly different challenge (e.g, how to take the dialogue context into account when producing a dialogue turn, how to detect and merge relevant information when summarising a text, or how to produce a well-formed text that correctly captures the information contained in some input data in the case of data-to-text generation). We outline the constraints specific to some of these tasks and examine how existing neural models account for them. More generally, this book considers text-to-text, meaning-to-text, and data-to-text transformations. It aims to provide the audience with a basic knowledge of neural approaches to text production and a roadmap to get them started with the related work. The book is mainly targeted at researchers, graduate students, and industrials interested in text production from different forms of inputs.
Описание: The aim of this book is to handle different application problems of science and engineering using expert Artificial Neural Network (ANN). As such, the book starts with basics of ANN along with different mathematical preliminaries with respect to algebraic equations. Then it addresses ANN based methods for solving different algebraic equations viz. polynomial equations, diophantine equations, transcendental equations, system of linear and nonlinear equations, eigenvalue problems etc. which are the basic equations to handle the application problems mentioned in the content of the book. Although there exist various methods to handle these problems, but sometimes those may be problem dependent and may fail to give a converge solution with particular discretization. Accordingly, ANN based methods have been addressed here to solve these problems. Detail ANN architecture with step by step procedure and algorithm have been included. Different example problems are solved with respect to various application and mathematical problems. Convergence plots and/or convergence tables of the solutions are depicted to show the efficacy of these methods. It is worth mentioning that various application problems viz. Bakery problem, Power electronics applications, Pole placement, Electrical Network Analysis, Structural engineering problem etc. have been solved using the ANN based methods.
Автор: Chakraborty, Debarati B Название: Granular video computing: with rough sets, deep learning and in iot ISBN: 981122711X ISBN-13(EAN): 9789811227110 Издательство: World Scientific Publishing Рейтинг: Цена: 12672.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This volume links the concept of granular computing using deep learning and the Internet of Things to object tracking for video analysis. It describes how uncertainties, involved in the task of video processing, could be handled in rough set theoretic granular computing frameworks. Issues such as object tracking from videos in constrained situations, occlusion/overlapping handling, measuring of the reliability of tracking methods, object recognition and linguistic interpretation in video scenes, and event prediction from videos, are the addressed in this volume. The book also looks at ways to reduce data dependency in the context of unsupervised (without manual interaction/ labeled data/ prior information) training.This book may be used both as a textbook and reference book for graduate students and researchers in computer science, electrical engineering, system science, data science, and information technology, and is recommended for both students and practitioners working in computer vision, machine learning, video analytics, image analytics, artificial intelligence, system design, rough set theory, granular computing, and soft computing.
Описание: A book for developers who are looking for an overview of basic concepts in Natural Language Processing. It casts a wide net of techniques to help developers who have a range of technical backgrounds. Numerous code samples and listings are included to support myriad topics.
Автор: Rafa? Scherer Название: Multiple Fuzzy Classification Systems ISBN: 3642436579 ISBN-13(EAN): 9783642436574 Издательство: Springer Рейтинг: Цена: 18284.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents a novel approach for exploratory data analysis with ensembles of various neuro-fuzzy systems. It places emphasis on ensembles that can work on incomplete data, thanks to rough set theory.
Автор: Graupe Daniel Название: Principles Of Artificial Neural Networks (3Rd Edition) ISBN: 9814522732 ISBN-13(EAN): 9789814522731 Издательство: World Scientific Publishing Рейтинг: Цена: 19008.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Artificial neural networks are most suitable for solving problems that are complex, ill-defined, highly nonlinear, of many and different variables, and/or stochastic. Such problems are abundant in medicine, in finance, in security and beyond.This volume covers the basic theory and architecture of the major artificial neural networks. Uniquely, it presents 18 complete case studies of applications of neural networks in various fields, ranging from cell-shape classification to micro-trading in finance and to constellation recognition - all with their respective source codes. These case studies demonstrate to the readers in detail how such case studies are designed and executed and how their specific results are obtained.The book is written for a one-semester graduate or senior-level undergraduate course on artificial neural networks. It is also intended to be a self-study and a reference text for scientists, engineers and for researchers in medicine, finance and data mining.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru