Автор: Rokach Lior Название: Pattern Classification Using Ensemble Methods ISBN: 9814271063 ISBN-13(EAN): 9789814271066 Издательство: World Scientific Publishing Рейтинг: Цена: 13464.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Researchers from various disciplines such as pattern recognition, statistics, and machine learning have explored the use of ensemble methodology since the late seventies. This book aims to impose a degree of order upon this diversity by presenting a coherent and unified repository of ensemble methods, theories, trends, challenges and applications.
Автор: Yang Yun Название: Temporal Data Mining via Unsupervised Ensemble Learning ISBN: 0128116544 ISBN-13(EAN): 9780128116548 Издательство: Elsevier Science Рейтинг: Цена: 7241.00 р. Наличие на складе: Поставка под заказ.
Описание: Temporal Data Mining via Unsupervised Ensemble Learning provides the principle knowledge of temporal data mining in association with unsupervised ensemble learning and the fundamental problems of temporal data clustering from different perspectives. By providing three proposed ensemble approaches of temporal data clustering, this book presents a practical focus of fundamental knowledge and techniques, along with a rich blend of theory and practice. . Furthermore, the book includes illustrations of the proposed approaches based on data and simulation experiments to demonstrate all methodologies, and is a guide to the proper usage of these methods. As there is nothing universal that can solve all problems, it is important to understand the characteristics of both clustering algorithms and the target temporal data so the correct approach can be selected for a given clustering problem. . Scientists, researchers, and data analysts working with machine learning and data mining will benefit from this innovative book, as will undergraduate and graduate students following courses in computer science, engineering, and statistics.
Описание: This book not only discusses the important topics in the area of machine learning and combinatorial optimization, it also combines them into one.
Автор: Cha Zhang; Yunqian Ma Название: Ensemble Machine Learning ISBN: 1489988173 ISBN-13(EAN): 9781489988171 Издательство: Springer Рейтинг: Цена: 20896.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The primary goal of this book is to give readers a complete treatment of the state-of-the-art ensemble learning methods. It also provides a set of applications that demonstrate the various usages of ensemble learning methods in the real-world.
Автор: Bol?n-Canedo Название: Recent Advances in Ensembles for Feature Selection ISBN: 331990079X ISBN-13(EAN): 9783319900797 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book offers a comprehensive overview of ensemble learning in the field of feature selection (FS), which consists of combining the output of multiple methods to obtain better results than any single method.
Автор: Duda, Richard O. Название: Pattern classification with computer manual, 2r.e. ISBN: 0471703508 ISBN-13(EAN): 9780471703501 Издательство: Wiley Рейтинг: Цена: 27712.00 р. Наличие на складе: Поставка под заказ.
Описание: The first edition, published in 1973, has become a classic reference in the field. Now with the second edition, readers will find information on key new topics such as neural networks and statistical pattern recognition, the theory of machine learning, and the theory of invariances. Also included are worked examples, comparisons between different methods, extensive graphics, expanded exercises and computer project topics.
An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.
Автор: Shigeo Abe Название: Support Vector Machines for Pattern Classification ISBN: 1447125487 ISBN-13(EAN): 9781447125488 Издательство: Springer Рейтинг: Цена: 22201.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This guide on the use of SVMs in pattern classification includes a rigorous performance comparison of classifiers and regressors. The book takes the unique approach of focusing on classification rather than covering the theoretical aspects of SVMs.
Автор: Geoff Dougherty Название: Pattern Recognition and Classification ISBN: 1493953354 ISBN-13(EAN): 9781493953356 Издательство: Springer Рейтинг: Цена: 12577.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This volume, both comprehensive and accessible, introduces all the key concepts in pattern recognition, and includes many examples and exercises that make it an ideal guide to an important methodology widely deployed in today`s ubiquitous automated systems.
Автор: Shigeo Abe Название: Pattern Classification ISBN: 1852333529 ISBN-13(EAN): 9781852333522 Издательство: Springer Рейтинг: Цена: 21661.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book provides a unified approach for developing a fuzzy classifier and explains the advantages and disadvantages of different classifiers through extensive performance evaluation of real data sets. It thus offers new learning paradigms for analyzing neural networks and fuzzy systems, while training fuzzy classifiers.
Описание: The present vol- ume, based mostly on his own work, is a milestone in the devel- opment of soft computing, integrating various disciplines from the fields of information science and engineering.
Автор: Abe, Shigeo Название: Pattern classification ISBN: 1447110773 ISBN-13(EAN): 9781447110774 Издательство: Springer Рейтинг: Цена: 16769.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book provides a unified approach for developing a fuzzy classifier and explains the advantages and disadvantages of different classifiers through extensive performance evaluation of real data sets. It thus offers new learning paradigms for analyzing neural networks and fuzzy systems, while training fuzzy classifiers.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru