Discrete Random Signal Processing and Filtering Primer with MATLAB, Poularikas, Alexander D.
Автор: Diniz Название: Adaptive Filtering ISBN: 1461441056 ISBN-13(EAN): 9781461441052 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: In its 4th edition, this book reviews basic concepts of adaptive signal processing and adaptive filtering in a concise and straightforward manner, covering the main classes of adaptive filtering algorithms and using clear notation to facilitate implementation.
Presents the Bayesian approach to statistical signal processing for a variety of useful model sets
This book aims to give readers a unified Bayesian treatment starting from the basics (Baye's rule) to the more advanced (Monte Carlo sampling), evolving to the next-generation model-based techniques (sequential Monte Carlo sampling). This next edition incorporates a new chapter on "Sequential Bayesian Detection," a new section on "Ensemble Kalman Filters" as well as an expansion of Case Studies that detail Bayesian solutions for a variety of applications. These studies illustrate Bayesian approaches to real-world problems incorporating detailed particle filter designs, adaptive particle filters and sequential Bayesian detectors. In addition to these major developments a variety of sections are expanded to "fill-in-the gaps" of the first edition. Here metrics for particle filter (PF) designs with emphasis on classical "sanity testing" lead to ensemble techniques as a basic requirement for performance analysis. The expansion of information theory metrics and their application to PF designs is fully developed and applied. These expansions of the book have been updated to provide a more cohesive discussion of Bayesian processing with examples and applications enabling the comprehension of alternative approaches to solving estimation/detection problems.
The second edition of Bayesian Signal Processing features
"Classical" Kalman filtering for linear, linearized, and nonlinear systems; "modern" unscented and ensemble Kalman filters: and the "next-generation" Bayesian particle filters
Sequential Bayesian detection techniques incorporating model-based schemes for a variety of real-world problems
Practical Bayesian processor designs including comprehensive methods of performance analysis ranging from simple sanity testing and ensemble techniques to sophisticated information metrics
New case studies on adaptive particle filtering and sequential Bayesian detection are covered detailing more Bayesian approaches to applied problem solving
MATLAB(R) notes at the end of each chapter help readers solve complex problems using readily available software commands and point out other software packages available
Problem sets included to test readers' knowledge and help them put their new skills into practice Bayesian
Signal Processing, Second Edition is written for all students, scientists, and engineers who investigate and apply signal processing to their everyday problems.
Описание: This book presents a unique viewpoint of signal processing from the Bayesian perspective in contrast to the pure statistical approach found in many textbooks. It features the next generation of processors that have recently been enabled with the advent of high speed/high throughput computers. The emphasis is on nonlinear/non-Gaussian problems, but classical techniques are included as special cases to enable the reader familiar with such methods to draw a parallel between the approaches. The common ground is the model sets. This text brings the reader from the classical methods of model-based signal processing including Kalman filtering for linear, linearized and approximate nonlinear processors as well as the recently developed unscented or sigma-point filters to the next generation of processors that will clearly dominate the future of model-based signal processing for years to come. Current applications (e.g. structures, tracking, equalization, biomedical) and simple examples to motivate the organization of the text are discussed. Examples are given to motivate all of the models and prepare the reader for further developments in subsequent chapters. In each case the processor along with accompanying simulations are discussed and applied to various data sets demonstrating the applicability and power of the Bayesian approach. The proposed text will be linked to the MATLAB (signal processing standard software) software package providing Notes as well as simple coding examples for illustrative purposes.
Автор: Meyer, Fernand Название: Topographical tools for filtering and segmentation 1 ISBN: 1786301571 ISBN-13(EAN): 9781786301574 Издательство: Wiley Рейтинг: Цена: 22010.00 р. Наличие на складе: Поставка под заказ.
Описание:
Mathematical morphology has developed a powerful methodology for segmenting images, based on connected filters and watersheds. We have chosen the abstract framework of node- or edge-weighted graphs for an extensive mathematical and algorithmic description of these tools.
Volume 1 is devoted to watersheds. The topography of a graph appears by observing the evolution of a drop of water moving from node to node on a weighted graph, along flowing paths, until it reaches regional minima. The upstream nodes of a regional minimum constitute its catchment zone.
The catchment zones may be constructed independently of each other and locally, in contrast with the traditional approach where the catchment basins have to be constructed all at the same time. Catchment zones may overlap, and thus, a new segmentation paradigm is proposed in which catchment zones cover each other according to a priority order. The resulting partition may then be corrected, by local and parallel treatments, in order to achieve the desired precision.
Автор: Mohinder S. Grewal,Angus P. Andrews Название: Kalman Filtering: Theory and Practice with MATLAB ISBN: 1118851218 ISBN-13(EAN): 9781118851210 Издательство: Wiley Рейтинг: Цена: 18050.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The definitive textbook and professional reference on Kalman Filtering fully updated, revised, and expanded This book contains the latest developments in the implementation and application of Kalman filtering.
Описание: ?Stochastic Control and Filtering over Constrained Communication Networks presents up-to-date research developments and novel methodologies on stochastic control and filtering for networked systems under constrained communication networks. It provides a framework of optimal controller/filter design, resilient filter design, stability and performance analysis for the systems considered, subject to various kinds of communication constraints, including signal-to-noise constraints, bandwidth constraints, and packet drops. Several techniques are employed to develop the controllers and filters desired, including:
Readers will benefit from the book’s new concepts, models and methodologies that have practical significance in control engineering and signal processing. Stochastic Control and Filtering over Constrained Communication Networks is a practical research reference for engineers dealing with networked control and filtering problems. It is also of interest to academics and students working in control and communication networks.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru