Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Sentiment analysis, Liu, Bing (university Of Illinois, Chicago)


Варианты приобретения
Цена: 10611.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Англия: Есть  Склад Америка: Есть  
При оформлении заказа до: 2025-08-04
Ориентировочная дата поставки: Август-начало Сентября

Добавить в корзину
в Мои желания

Автор: Liu, Bing (university Of Illinois, Chicago)
Название:  Sentiment analysis
ISBN: 9781108486378
Издательство: Cambridge Academ
Классификация:



ISBN-10: 1108486371
Обложка/Формат: Hardcover
Страницы: 448
Вес: 0.79 кг.
Дата издания: 15.10.2020
Серия: Studies in natural language processing
Язык: English
Издание: 2 revised edition
Иллюстрации: Worked examples or exercises
Размер: 23.65 x 16.36 x 2.67 cm
Читательская аудитория: Professional & vocational
Подзаголовок: Mining opinions, sentiments, and emotions
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание: Sentiment analysis is the computational study of people`s opinions, emotions, and attitudes. This comprehensive introduction covers all core areas useful for researchers and practitioners in natural language processing, computer science, management sciences, and the social sciences. The second edition includes new deep learning analysis methods.


Prominent Feature Extraction for Sentiment Analysis

Автор: Agarwal Basant, Mittal Namita
Название: Prominent Feature Extraction for Sentiment Analysis
ISBN: 3319797751 ISBN-13(EAN): 9783319797755
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

1 Introduction

2 Literature Survey

3 Machine Learning Approach for Sentiment Analysis

4 Semantic Parsing using Dependency Rules

5 Sentiment Analysis using ConceptNet Ontology and Context

Information

6 Semantic Orientation based Approach for Sentiment Analysis

7 Conclusions and FutureWork

References

Glossary
Index

Advances in Social Networking-Based Learning: Machine Learning-Based User Modelling and Sentiment Analysis

Автор: Troussas Christos, Virvou Maria
Название: Advances in Social Networking-Based Learning: Machine Learning-Based User Modelling and Sentiment Analysis
ISBN: 3030391299 ISBN-13(EAN): 9783030391294
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book discusses three important, hot research issues: social networking-based learning, machine learning-based user modeling and sentiment analysis.

Sentiment Analysis in the Bio-Medical Domain

Автор: Ranjan Satapathy; Erik Cambria; Amir Hussain
Название: Sentiment Analysis in the Bio-Medical Domain
ISBN: 3319886096 ISBN-13(EAN): 9783319886091
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Поставка под заказ.

Deep Learning-Based Approaches for Sentiment Analysis

Автор: Basant Agarwal, Richi Nayak
Название: Deep Learning-Based Approaches for Sentiment Analysis
ISBN: 9811512159 ISBN-13(EAN): 9789811512155
Издательство: Springer
Рейтинг:
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book covers deep-learning-based approaches for sentiment analysis, a relatively new, but fast-growing research area, which has significantly changed in the past few years.

Economic Foundations for Social Complexity Science: Theory, Sentiments, and Empirical Laws

Автор: Aruka Yuji, Kirman Alan
Название: Economic Foundations for Social Complexity Science: Theory, Sentiments, and Empirical Laws
ISBN: 9811354677 ISBN-13(EAN): 9789811354670
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book focuses on how important massive information is and how sensitive outcomes are to information.

Sentiment Analysis and Ontology Engineering: An Environment of Computational Intelligence

Автор: Pedrycz Witold, Chen Shyi-Ming
Название: Sentiment Analysis and Ontology Engineering: An Environment of Computational Intelligence
ISBN: 331980779X ISBN-13(EAN): 9783319807799
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Fundamentals of Sentiment Analysis and Its Applications.- Fundamentals of Sentiment Analysis: Concepts and Methodology.- The Comprehension of Figurative Language: What is the Influence of Irony and Sarcasm on NLP Techniques?.- Probabilistic Approaches for Sentiment Analysis: Latent Dirichlet Allocation for Ontology Building and Sentiment Extraction.- Description Logic Class Expression Learning Applied to Sentiment Analysis.- Capturing Digest Emotions by Means of Fuzzy Linguistic Aggregation.- Hyperelastic-based Adaptive Dynamics Methodology in Knowledge Acquisition for Computational Intelligence on Ontology Engineering of Evolving Folksonomy Driven Environment.- Sentiment-Oriented Information Retrieval: Affective Analysis of Documents Based on the SenticNet Framework.- Interpretability of Computational Models for Sentiment Analysis.- Chinese Micro-blog Emotion Classification by Exploiting Linguistic Features and SVMperf.- Social Media and News Sentiment Analysis for Advanced Investment Strategies.- Context Aware Customer Experience Management: A Development Framework Based on Ontologies and Computational Intelligence.- An Overview of Sentiment Analysis in Social Media and Its Applications in Disaster Relief.- Big Data Sentiment Analysis for Brand Monitoring in Social Media Streams by Cloud Computing.- Neuro-Fuzzy Sentiment Analysis for Customer Review Rating Prediction.- OntoLSA: An Integrated Text Mining System for Ontology Learning and Sentiment Analysis.- Knowledge-based Tweet Classification for Disease Sentiment Monitoring.

Sentiment Analysis and Ontology Engineering

Автор: Witold Pedrycz; Shyi-Ming Chen
Название: Sentiment Analysis and Ontology Engineering
ISBN: 3319303171 ISBN-13(EAN): 9783319303178
Издательство: Springer
Рейтинг:
Цена: 20896.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Fundamentals of Sentiment Analysis and Its Applications.- Fundamentals of Sentiment Analysis: Concepts and Methodology.- The Comprehension of Figurative Language: What is the Influence of Irony and Sarcasm on NLP Techniques?.- Probabilistic Approaches for Sentiment Analysis: Latent Dirichlet Allocation for Ontology Building and Sentiment Extraction.- Description Logic Class Expression Learning Applied to Sentiment Analysis.- Capturing Digest Emotions by Means of Fuzzy Linguistic Aggregation.- Hyperelastic-based Adaptive Dynamics Methodology in Knowledge Acquisition for Computational Intelligence on Ontology Engineering of Evolving Folksonomy Driven Environment.- Sentiment-Oriented Information Retrieval: Affective Analysis of Documents Based on the SenticNet Framework.- Interpretability of Computational Models for Sentiment Analysis.- Chinese Micro-blog Emotion Classification by Exploiting Linguistic Features and SVMperf.- Social Media and News Sentiment Analysis for Advanced Investment Strategies.- Context Aware Customer Experience Management: A Development Framework Based on Ontologies and Computational Intelligence.- An Overview of Sentiment Analysis in Social Media and Its Applications in Disaster Relief.- Big Data Sentiment Analysis for Brand Monitoring in Social Media Streams by Cloud Computing.- Neuro-Fuzzy Sentiment Analysis for Customer Review Rating Prediction.- OntoLSA: An Integrated Text Mining System for Ontology Learning and Sentiment Analysis.- Knowledge-based Tweet Classification for Disease Sentiment Monitoring.

Prominent Feature Extraction for Sentiment Analysis

Автор: Basant Agarwal; Namita Mittal
Название: Prominent Feature Extraction for Sentiment Analysis
ISBN: 3319253417 ISBN-13(EAN): 9783319253411
Издательство: Springer
Рейтинг:
Цена: 18284.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

1 Introduction

2 Literature Survey

3 Machine Learning Approach for Sentiment Analysis

4 Semantic Parsing using Dependency Rules

5 Sentiment Analysis using ConceptNet Ontology and Context

Information

6 Semantic Orientation based Approach for Sentiment Analysis

7 Conclusions and FutureWork

References

Glossary
Index

Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks

Автор: Arindam Chaudhuri
Название: Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks
ISBN: 9811374732 ISBN-13(EAN): 9789811374739
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents the latest research on hierarchical deep learning for multi-modal sentiment analysis. Further, it analyses sentiments in Twitter blogs from both textual and visual content using hierarchical deep learning networks: hierarchical gated feedback recurrent neural networks (HGFRNNs). Several studies on deep learning have been conducted to date, but most of the current methods focus on either only textual content, or only visual content. In contrast, the proposed sentiment analysis model can be applied to any social blog dataset, making the book highly beneficial for postgraduate students and researchers in deep learning and sentiment analysis. The mathematical abstraction of the sentiment analysis model is presented in a very lucid manner. The complete sentiments are analysed by combining text and visual prediction results. The book’s novelty lies in its development of innovative hierarchical recurrent neural networks for analysing sentiments; stacking of multiple recurrent layers by controlling the signal flow from upper recurrent layers to lower layers through a global gating unit; evaluation of HGFRNNs with different types of recurrent units; and adaptive assignment of HGFRNN layers to different timescales. Considering the need to leverage large-scale social multimedia content for sentiment analysis, both state-of-the-art visual and textual sentiment analysis techniques are used for joint visual-textual sentiment analysis. The proposed method yields promising results from Twitter datasets that include both texts and images, which support the theoretical hypothesis.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия