Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Explainable Fuzzy Systems: Paving the Way from Interpretable Fuzzy Systems to Explainable AI Systems, Alonso Moral Jose Maria, Castiello Ciro, Magdalena Luis


Варианты приобретения
Цена: 23757.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Alonso Moral Jose Maria, Castiello Ciro, Magdalena Luis
Название:  Explainable Fuzzy Systems: Paving the Way from Interpretable Fuzzy Systems to Explainable AI Systems
ISBN: 9783030710972
Издательство: Springer
Классификация:
ISBN-10: 3030710971
Обложка/Формат: Hardcover
Страницы: 232
Вес: 0.55 кг.
Дата издания: 08.04.2021
Язык: English
Размер: 23.39 x 15.60 x 1.60 cm
Ссылка на Издательство: Link
Поставляется из: Германии
Описание: Design of Explainable Fuzzy Systems (EXFS) is rooted in Interpretable Fuzzy Systems, which are thoroughly covered in the book. Finally, the book shows with practical examples how to design EXFS from interpretable fuzzy systems and natural language generation.


Explainable Neural Networks Based on Fuzzy Logic and Multi-Criteria Decision Tools

Автор: Dombi Jуzsef, Csiszбr Orsolya
Название: Explainable Neural Networks Based on Fuzzy Logic and Multi-Criteria Decision Tools
ISBN: 3030722791 ISBN-13(EAN): 9783030722791
Издательство: Springer
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The research presented in this book shows how combining deep neural networks with a special class of fuzzy logical rules and multi-criteria decision tools can make deep neural networks more interpretable - and even, in many cases, more efficient.

Design of Interpretable Fuzzy Systems

Автор: Krzysztof Cpa?ka
Название: Design of Interpretable Fuzzy Systems
ISBN: 3319528807 ISBN-13(EAN): 9783319528809
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The individual chapters describe various aspects of interpretability, including appropriate selection of the structure of a fuzzy system, focusing on improving the interpretability of fuzzy systems designed using both gradient-learning and evolutionary algorithms.

Design of Interpretable Fuzzy Systems

Автор: Krzysztof Cpa?ka
Название: Design of Interpretable Fuzzy Systems
ISBN: 3319850067 ISBN-13(EAN): 9783319850061
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Поставка под заказ.

Описание: The individual chapters describe various aspects of interpretability, including appropriate selection of the structure of a fuzzy system, focusing on improving the interpretability of fuzzy systems designed using both gradient-learning and evolutionary algorithms.

Explainable and Interpretable Models in Computer Vision and Machine Learning

Автор: Hugo Jair Escalante; Sergio Escalera; Isabelle Guy
Название: Explainable and Interpretable Models in Computer Vision and Machine Learning
ISBN: 3319981307 ISBN-13(EAN): 9783319981307
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This book compiles leading research on the development of explainable and interpretable machine learning methods in the context of computer vision and machine learning.Research progress in computer vision and pattern recognition has led to a variety of modeling techniques with almost human-like performance. Although these models have obtained astounding results, they are limited in their explainability and interpretability: what is the rationale behind the decision made? what in the model structure explains its functioning? Hence, while good performance is a critical required characteristic for learning machines, explainability and interpretability capabilities are needed to take learning machines to the next step to include them in decision support systems involving human supervision. This book, written by leading international researchers, addresses key topics of explainability and interpretability, including the following: · Evaluation and Generalization in Interpretable Machine Learning· Explanation Methods in Deep Learning· Learning Functional Causal Models with Generative Neural Networks· Learning Interpreatable Rules for Multi-Label Classification· Structuring Neural Networks for More Explainable Predictions· Generating Post Hoc Rationales of Deep Visual Classification Decisions· Ensembling Visual Explanations· Explainable Deep Driving by Visualizing Causal Attention· Interdisciplinary Perspective on Algorithmic Job Candidate Search· Multimodal Personality Trait Analysis for Explainable Modeling of Job Interview Decisions · Inherent Explainability Pattern Theory-based Video Event Interpretations
Explainable, Transparent Autonomous Agents and Multi-Agent Systems: Second International Workshop, Extraamas 2020, Auckland, New Zealand, May 9-13, 20

Автор: Calvaresi Davide, Najjar Amro, Winikoff Michael
Название: Explainable, Transparent Autonomous Agents and Multi-Agent Systems: Second International Workshop, Extraamas 2020, Auckland, New Zealand, May 9-13, 20
ISBN: 3030519236 ISBN-13(EAN): 9783030519230
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the proceedings of the Second International Workshop on Explainable, Transparent Autonomous Agents and Multi-Agent Systems, EXTRAAMAS 2020, which was due to be held in Auckland, New Zealand, in May 2020.

Explainable and Transparent AI and Multi-Agent Systems: Third International Workshop, Extraamas 2021, Virtual Event, May 3-7, 2021, Revised Selected P

Автор: Calvaresi Davide, Najjar Amro, Winikoff Michael
Название: Explainable and Transparent AI and Multi-Agent Systems: Third International Workshop, Extraamas 2021, Virtual Event, May 3-7, 2021, Revised Selected P
ISBN: 3030820165 ISBN-13(EAN): 9783030820169
Издательство: Springer
Цена: 11878.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the proceedings of the Third International Workshop on Explainable, Transparent AI and Multi-Agent Systems, EXTRAAMAS 2021, which was held virtually due to the COVID-19 pandemic. The 19 long revised papers and 1 short contribution were carefully selected from 32 submissions.

Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems

Автор: Mar Marcos; Jose M. Juarez; Richard Lenz; Grzegorz
Название: Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems
ISBN: 3030374459 ISBN-13(EAN): 9783030374457
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes revised selected papers from the AIME 2019 workshops KR4HC/ProHealth 2019, the Workshop on Knowledge Representation for Health Care and Process-Oriented Information Systems in Health Care, and TEAAM 2019, the Workshop on Transparent, Explainable and Affective AI in Medical Systems.

Explainable, Transparent Autonomous Agents and Multi-Agent Systems

Автор: Davide Calvaresi; Amro Najjar; Michael Schumacher;
Название: Explainable, Transparent Autonomous Agents and Multi-Agent Systems
ISBN: 303030390X ISBN-13(EAN): 9783030303907
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the proceedings of the First International Workshop on Explainable, Transparent Autonomous Agents and Multi-Agent Systems, EXTRAAMAS 2019, held in Montreal, Canada, in May 2019. The 12 revised and extended papers presented were carefully selected from 23 submissions. explainable agent simulations;

Explainable Artificial Intelligence Based on Neuro-Fuzzy Modeling with Applications in Finance

Автор: Rutkowski Tom
Название: Explainable Artificial Intelligence Based on Neuro-Fuzzy Modeling with Applications in Finance
ISBN: 3030755207 ISBN-13(EAN): 9783030755201
Издательство: Springer
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The book proposes techniques, with an emphasis on the financial sector, which will make recommendation systems both accurate and explainable. However, in many applications, e.g., medical diagnosis or venture capital investment recommendations, it is essential to explain the rationale behind AI systems decisions or recommendations.

Explainable AI and Other Applications of Fuzzy Techniques: Proceedings of the 2021 Annual Conference of the North American Fuzzy Information Processin

Автор: Rayz Julia, Raskin Victor, Dick Scott
Название: Explainable AI and Other Applications of Fuzzy Techniques: Proceedings of the 2021 Annual Conference of the North American Fuzzy Information Processin
ISBN: 303082098X ISBN-13(EAN): 9783030820985
Издательство: Springer
Рейтинг:
Цена: 34937.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This book focuses on an overview of the AI techniques, their foundations, their applications, and remaining challenges and open problems. Many artificial intelligence (AI) techniques do not explain their recommendations. Providing natural-language explanations for numerical AI recommendations is one of the main challenges of modern AI. To provide such explanations, a natural idea is to use techniques specifically designed to relate numerical recommendations and natural-language descriptions, namely fuzzy techniques.

This book is of interest to practitioners who want to use fuzzy techniques to make AI applications explainable, to researchers who may want to extend the ideas from these papers to new application areas, and to graduate students who are interested in the state-of-the-art of fuzzy techniques and of explainable AI--in short, to anyone who is interested in problems involving fuzziness and AI in general.


Reasoning Web. Explainable Artificial Intelligence

Автор: Markus Kr?tzsch; Daria Stepanova
Название: Reasoning Web. Explainable Artificial Intelligence
ISBN: 3030314227 ISBN-13(EAN): 9783030314224
Издательство: Springer
Рейтинг:
Цена: 8104.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This volume contains lecture notes of the 15th Reasoning Web Summer School (RW 2019), held in Bolzano, Italy, in September 2019. The research areas of Semantic Web, Linked Data, and Knowledge Graphs have recently received a lot of attention in academia and industry. Since its inception in 2001, the Semantic Web has aimed at enriching the existing Web with meta-data and processing methods, so as to provide Web-based systems with intelligent capabilities such as context awareness and decision support. The Semantic Web vision has been driving many community efforts which have invested a lot of resources in developing vocabularies and ontologies for annotating their resources semantically. Besides ontologies, rules have long been a central part of the Semantic Web framework and are available as one of its fundamental representation tools, with logic serving as a unifying foundation. Linked Data is a related research area which studies how one can make RDF data available on the Web and interconnect it with other data with the aim of increasing its value for everybody. Knowledge Graphs have been shown useful not only for Web search (as demonstrated by Google, Bing, etc.) but also in many application domains.

Explainable AI: Interpreting, Explaining and Visualizing Deep Learning

Автор: Wojciech Samek; Gr?goire Montavon; Andrea Vedaldi;
Название: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning
ISBN: 3030289532 ISBN-13(EAN): 9783030289539
Издательство: Springer
Рейтинг:
Цена: 10340.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner.The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.

ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия