Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Unsupervised Learning Algorithms, Celebi M. Emre, Aydin Kemal


Варианты приобретения
Цена: 15372.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Celebi M. Emre, Aydin Kemal
Название:  Unsupervised Learning Algorithms
ISBN: 9783319795904
Издательство: Springer
Классификация:




ISBN-10: 3319795902
Обложка/Формат: Paperback
Страницы: 558
Вес: 0.79 кг.
Дата издания: 26.05.2018
Язык: English
Издание: Softcover reprint of
Иллюстрации: 100 tables, color; 71 tables, black and white; 101 illustrations, color; 59 illustrations, black and white; x, 558 p. 160 illus., 101 illus. in color.
Размер: 23.39 x 15.60 x 2.95 cm
Читательская аудитория: General (us: trade)
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book summarizes the state-of-the-art in unsupervised learning. The contributors discuss how with the proliferation of massive amounts of unlabeled data, unsupervised learning algorithms, which can automatically discover interesting and useful patterns in such data, have gained popularity among researchers and practitioners.


Unsupervised Learning in Space and Time

Автор: Marius Leordeanu
Название: Unsupervised Learning in Space and Time
ISBN: 3030421279 ISBN-13(EAN): 9783030421274
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book addresses one of the most important unsolved problems in artificial intelligence: the task of learning, in an unsupervised manner, from massive quantities of spatiotemporal visual data that are available at low cost. The book covers important scientific discoveries and findings, with a focus on the latest advances in the field. Presenting a coherent structure, the book logically connects novel mathematical formulations and efficient computational solutions for a range of unsupervised learning tasks, including visual feature matching, learning and classification, object discovery, and semantic segmentation in video.

The final part of the book proposes a general strategy for visual learning over several generations of student-teacher neural networks, along with a unique view on the future of unsupervised learning in real-world contexts. Offering a fresh approach to this difficult problem, several efficient, state-of-the-art unsupervised learning algorithms are reviewed in detail, complete with an analysis of their performance on various tasks, datasets, and experimental setups. By highlighting the interconnections between these methods, many seemingly diverse problems are elegantly brought together in a unified way.

Serving as an invaluable guide to the computational tools and algorithms required to tackle the exciting challenges in the field, this book is a must-read for graduate students seeking a greater understanding of unsupervised learning, as well as researchers in computer vision, machine learning, robotics, and related disciplines.

New Developments in Unsupervised Outlier Detection: Algorithms and Applications

Автор: Wang Xiaochun, Wang Xiali, Wilkes Mitch
Название: New Developments in Unsupervised Outlier Detection: Algorithms and Applications
ISBN: 9811595186 ISBN-13(EAN): 9789811595189
Издательство: Springer
Цена: 19564.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Overview and Contributions.- Developments in Unsupervised Outlier Detection Research.- A Fast Distance-Based Outlier Detection Technique Using A Divisive Hierarchical Clustering Algorithm.- A k-Nearest Neighbour Centroid Based Outlier Detection Method.- A Minimum Spanning Tree Clustering Inspired Outlier Detection Technique.- A k-Nearest Neighbour Spectral Clustering Based Outlier Detection Technique.- Enhancing Outlier Detection by Filtering Out Core Points and Border Points.- An Effective Boundary Point Detection Algorithm via k-Nearest Neighbours Based Centroid.- A Nearest Neighbour Classifier Based Automated On-Line Novel Visual Percept Detection Method.- Unsupervised Fraud Detection in Environmental Time Series Data.

Sampling Techniques for Supervised or Unsupervised Tasks

Автор: Fr?d?ric Ros; Serge Guillaume
Название: Sampling Techniques for Supervised or Unsupervised Tasks
ISBN: 3030293483 ISBN-13(EAN): 9783030293482
Издательство: Springer
Рейтинг:
Цена: 16070.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book describes in detail sampling techniques that can be used for unsupervised and supervised cases, with a focus on sampling techniques for machine learning algorithms. It covers theory and models of sampling methods for managing scalability and the “curse of dimensionality”, their implementations, evaluations, and applications. A large part of the book is dedicated to database comprising standard feature vectors, and a special section is reserved to the handling of more complex objects and dynamic scenarios. The book is ideal for anyone teaching or learning pattern recognition and interesting teaching or learning pattern recognition and is interested in the big data challenge. It provides an accessible introduction to the ?eld and discusses the state of the art concerning sampling techniques for supervised and unsupervised task.Provides a comprehensive description of sampling techniques for unsupervised and supervised tasks;Describe implementation and evaluation of algorithms that simultaneously manage scalable problems and curse of dimensionality;Addresses the role of sampling in dynamic scenarios, sampling when dealing with complex objects, and new challenges arising from big data. 'This book represents a timely collection of state-of-the art research of sampling techniques, suitable for anyone who wants to become more familiar with these helpful techniques for tackling the big data challenge.'M. Emre Celebi, Ph.D., Professor and Chair, Department of Computer Science, University of Central Arkansas

'In science the difficulty is not to have ideas, but it is to make them work'From Carlo Rovelli
Natural Computing for Unsupervised Learning

Автор: Li Xiangtao, Wong Ka-Chun
Название: Natural Computing for Unsupervised Learning
ISBN: 3319985655 ISBN-13(EAN): 9783319985657
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book highlights recent research advances in unsupervised learning using natural computing techniques such as artificial neural networks, evolutionary algorithms, swarm intelligence, artificial immune systems, artificial life, quantum computing, DNA computing, and others. The book also includes information on the use of natural computing techniques for unsupervised learning tasks. It features several trending topics, such as big data scalability, wireless network analysis, engineering optimization, social media, and complex network analytics. It shows how these applications have triggered a number of new natural computing techniques to improve the performance of unsupervised learning methods. With this book, the readers can easily capture new advances in this area with systematic understanding of the scope in depth. Readers can rapidly explore new methods and new applications at the junction between natural computing and unsupervised learning. Includes advances on unsupervised learning using natural computing techniquesReports on topics in emerging areas such as evolutionary multi-objective unsupervised learning Features natural computing techniques such as evolutionary multi-objective algorithms and many-objective swarm intelligence algorithms

Applications of Supervised and Unsupervised Ensemble Methods

Автор: Oleg Okun
Название: Applications of Supervised and Unsupervised Ensemble Methods
ISBN: 3642039987 ISBN-13(EAN): 9783642039980
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Expanding upon presentations at last year`s SUEMA (Supervised and Unsupervised Ensemble Methods and Applications) meeting, this volume explores recent developments in the field. Useful examples act as a guide for practitioners in computational intelligence.

Supervised and Unsupervised Ensemble Methods and their Applications

Автор: Oleg Okun
Название: Supervised and Unsupervised Ensemble Methods and their Applications
ISBN: 3540789804 ISBN-13(EAN): 9783540789802
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Ensembles of Clustering Methods and Their Applications.- Cluster Ensemble Methods: from Single Clusterings to Combined Solutions.- Random Subspace Ensembles for Clustering Categorical Data.- Ensemble Clustering with a Fuzzy Approach.- Collaborative Multi-Strategical Clustering for Object-Oriented Image Analysis.- Ensembles of Classification Methods and Their Applications.- Intrusion Detection in Computer Systems Using Multiple Classifier Systems.- Ensembles of Nearest Neighbors for Gene Expression Based Cancer Classification.- Multivariate Time Series Classification via Stacking of Univariate Classifiers.- Gradient Boosting GARCH and Neural Networks for Time Series Prediction.- Cascading with VDM and Binary Decision Trees for Nominal Data.- Erratum.

Sampling Techniques for Supervised or Unsupervised Tasks

Автор: Ros Frйdйric, Guillaume Serge
Название: Sampling Techniques for Supervised or Unsupervised Tasks
ISBN: 3030293513 ISBN-13(EAN): 9783030293512
Издательство: Springer
Цена: 16070.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Introduction to sampling techniques.- Core-sets: an Updated Survey.- A family of unsupervised sampling algorithms.- From supervised instance and feature selection algorithms to dual selection: A Review.- Approximating Spectral Clustering via Sampling: A Review.- Sampling technique for complex data.- Boosting the Exploration of Huge Dynamic Graphs.

Dimensionality Reduction with Unsupervised Nearest Neighbors

Автор: Oliver Kramer
Название: Dimensionality Reduction with Unsupervised Nearest Neighbors
ISBN: 3662518953 ISBN-13(EAN): 9783662518953
Издательство: Springer
Рейтинг:
Цена: 16977.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is devoted to a novel approach for dimensionality reduction based on the famous nearest neighbor method that is a powerful classification and regression approach.

Unsupervised Machine Learning for Clustering in Political and Social Research

Автор: Philip D. Waggoner
Название: Unsupervised Machine Learning for Clustering in Political and Social Research
ISBN: 110879338X ISBN-13(EAN): 9781108793384
Издательство: Cambridge Academ
Рейтинг:
Цена: 2851.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Offers researchers and teachers an introduction to clustering, which is a prominent class of unsupervised machine learning for exploring and understanding latent, non-random structure in data. A suite of widely used clustering techniques is covered, in addition to R code and real data to facilitate interaction with the concepts.

Face Image Analysis by Unsupervised Learning

Автор: Marian Stewart Bartlett
Название: Face Image Analysis by Unsupervised Learning
ISBN: 1461356539 ISBN-13(EAN): 9781461356530
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Face Image Analysis by Unsupervised Learning explores adaptive approaches to image analysis.

Unsupervised Feature Extraction Applied to Bioinformatics: A Pca Based and TD Based Approach

Автор: Taguchi Y-H
Название: Unsupervised Feature Extraction Applied to Bioinformatics: A Pca Based and TD Based Approach
ISBN: 3030224589 ISBN-13(EAN): 9783030224585
Издательство: Springer
Рейтинг:
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tenor decomposition.

Hands-On Unsupervised Learning Using Python: How to Build Applied Machine Learning Solutions from Unlabeled Data

Автор: Patel Ankur A.
Название: Hands-On Unsupervised Learning Using Python: How to Build Applied Machine Learning Solutions from Unlabeled Data
ISBN: 1492035645 ISBN-13(EAN): 9781492035640
Издательство: Wiley
Рейтинг:
Цена: 10136.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Many industry experts consider unsupervised learning the next frontier in artificial intelligence, one that may hold the key to general artificial intelligence. Author Ankur Patel shows you how to apply unsupervised learning using two simple, production-ready Python frameworks: Scikit-learn and TensorFlow using Keras.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия