Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Linking Sensitive Data: Methods and Techniques for Practical Privacy-Preserving Information Sharing, Christen Peter, Ranbaduge Thilina, Schnell Rainer


Варианты приобретения
Цена: 22359.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Christen Peter, Ranbaduge Thilina, Schnell Rainer
Название:  Linking Sensitive Data: Methods and Techniques for Practical Privacy-Preserving Information Sharing
ISBN: 9783030597054
Издательство: Springer
Классификация:



ISBN-10: 3030597059
Обложка/Формат: Hardcover
Страницы: 468
Вес: 0.86 кг.
Дата издания: 22.11.2020
Язык: English
Размер: 23.39 x 15.60 x 2.69 cm
Ссылка на Издательство: Link
Поставляется из: Германии
Описание: The first part introduces the reader to the topic of linking sensitive data, the second part covers methods and techniques to link such data, the third part discusses aspects of practical importance, and the fourth part provides an outlook of future challenges and open research problems relevant to linking sensitive databases.


Text Data Management and Analysis: A Practical Introduction to Information Retrieval and Text Mining

Автор: Zhai Chengxiang, Massung Sean
Название: Text Data Management and Analysis: A Practical Introduction to Information Retrieval and Text Mining
ISBN: 1970001194 ISBN-13(EAN): 9781970001198
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 15481.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Recent years have seen a dramatic growth of natural language text data, including web pages, news articles, scientific literature, emails, enterprise documents, and social media such as blog articles, forum posts, product reviews, and tweets. This has led to an increasing demand for powerful software tools to help people analyze and manage vast amounts of text data effectively and efficiently. Unlike data generated by a computer system or sensors, text data are usually generated directly by humans, and are accompanied by semantically rich content. As such, text data are especially valuable for discovering knowledge about human opinions and preferences, in addition to many other kinds of knowledge that we encode in text. In contrast to structured data, which conform to well-defined schemas (thus are relatively easy for computers to handle), text has less explicit structure, requiring computer processing toward understanding of the content encoded in text. The current technology of natural language processing has not yet reached a point to enable a computer to precisely understand natural language text, but a wide range of statistical and heuristic approaches to analysis and management of text data have been developed over the past few decades. They are usually very robust and can be applied to analyze and manage text data in any natural language, and about any topic.This book provides a systematic introduction to all these approaches, with an emphasis on covering the most useful knowledge and skills required to build a variety of practically useful text information systems. The focus is on text mining applications that can help users analyze patterns in text data to extract and reveal useful knowledge. Information retrieval systems, including search engines and recommender systems, are also covered as supporting technology for text mining applications. The book covers the major concepts, techniques, and ideas in text data mining and information retrieval from a practical viewpoint, and includes many hands-on exercises designed with a companion software toolkit (i.e., MeTA) to help readers learn how to apply techniques of text mining and information retrieval to real-world text data and how to experiment with and improve some of the algorithms for interesting application tasks. The book can be used as a textbook for a computer science undergraduate course or a reference book for practitioners working on relevant problems in analyzing and managing text data.

Social Tagging for Linking Data Across Environments

Автор: Pennington Diane
Название: Social Tagging for Linking Data Across Environments
ISBN: 1783303387 ISBN-13(EAN): 9781783303380
Издательство: Facet
Рейтинг:
Цена: 16368.00 р.
Наличие на складе: Нет в наличии.

Описание: This book, representing researchers and practitioners across different information professions, will explore how social tags can link content across a variety of environments.

Linking Enterprise Data

Автор: David Wood
Название: Linking Enterprise Data
ISBN: 1489981705 ISBN-13(EAN): 9781489981707
Издательство: Springer
Рейтинг:
Цена: 21661.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book methods for applying World Wide Web architecture principles to real-world information management issues faced by commercial, nonprofit and government enterprises. Coverage includes real-world success stories from early enterprise adopters.

Text Data Management and Analysis: A Practical Introduction to Information Retrieval and Text Mining

Автор: Zhai Chengxiang, Massung Sean
Название: Text Data Management and Analysis: A Practical Introduction to Information Retrieval and Text Mining
ISBN: 197000116X ISBN-13(EAN): 9781970001167
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 12860.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Recent years have seen a dramatic growth of natural language text data, including web pages, news articles, scientific literature, emails, enterprise documents, and social media such as blog articles, forum posts, product reviews, and tweets. This has led to an increasing demand for powerful software tools to help people analyze and manage vast amounts of text data effectively and efficiently. Unlike data generated by a computer system or sensors, text data are usually generated directly by humans, and are accompanied by semantically rich content. As such, text data are especially valuable for discovering knowledge about human opinions and preferences, in addition to many other kinds of knowledge that we encode in text. In contrast to structured data, which conform to well-defined schemas (thus are relatively easy for computers to handle), text has less explicit structure, requiring computer processing toward understanding of the content encoded in text. The current technology of natural language processing has not yet reached a point to enable a computer to precisely understand natural language text, but a wide range of statistical and heuristic approaches to analysis and management of text data have been developed over the past few decades. They are usually very robust and can be applied to analyze and manage text data in any natural language, and about any topic.This book provides a systematic introduction to all these approaches, with an emphasis on covering the most useful knowledge and skills required to build a variety of practically useful text information systems. The focus is on text mining applications that can help users analyze patterns in text data to extract and reveal useful knowledge. Information retrieval systems, including search engines and recommender systems, are also covered as supporting technology for text mining applications. The book covers the major concepts, techniques, and ideas in text data mining and information retrieval from a practical viewpoint, and includes many hands-on exercises designed with a companion software toolkit (i.e., MeTA) to help readers learn how to apply techniques of text mining and information retrieval to real-world text data and how to experiment with and improve some of the algorithms for interesting application tasks. The book can be used as a textbook for a computer science undergraduate course or a reference book for practitioners working on relevant problems in analyzing and managing text data.

Privacy-Preserving Data Mining

Автор: Charu C. Aggarwal; Philip S. Yu
Название: Privacy-Preserving Data Mining
ISBN: 1441943714 ISBN-13(EAN): 9781441943712
Издательство: Springer
Рейтинг:
Цена: 27251.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book proposes a number of techniques to perform data mining tasks in a privacy-preserving way. The survey information included with each chapter is unique in terms of its focus on introducing the different topics more comprehensively.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия