Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Evolutionary Data Clustering: Algorithms and Applications, Aljarah Ibrahim, Faris Hossam, Mirjalili Seyedali


Варианты приобретения
Цена: 25155.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Aljarah Ibrahim, Faris Hossam, Mirjalili Seyedali
Название:  Evolutionary Data Clustering: Algorithms and Applications
ISBN: 9789813341906
Издательство: Springer
Классификация:



ISBN-10: 9813341904
Обложка/Формат: Hardcover
Страницы: 248
Вес: 0.54 кг.
Дата издания: 03.05.2021
Язык: English
Размер: 23.39 x 15.60 x 1.60 cm
Ссылка на Издательство: Link
Поставляется из: Германии
Описание: It features a range of proven and recent nature-inspired algorithms used to data clustering, including particle swarm optimization, ant colony optimization, grey wolf optimizer, salp swarm algorithm, multi-verse optimizer, Harris hawks optimization, beta-hill climbing optimization.


Advanced Multi-Industry Applications of Big Data Clustering and Machine Learning

Автор: Fausto Pedro Garcia Marquez
Название: Advanced Multi-Industry Applications of Big Data Clustering and Machine Learning
ISBN: 1799801063 ISBN-13(EAN): 9781799801061
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 38254.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: As organizations continue to develop, there is an increasing need for technological methods that can keep up with the rising amount of data and information that is being generated. Machine learning is a tool that has become powerful due to its ability to analyze large amounts of data quickly. Machine learning is one of many technological advancements that is being implemented into a multitude of specialized fields. An extensive study on the execution of these advancements within professional industries is necessary.

Advanced Multi-Industry Applications of Big Data Clustering and Machine Learning is an essential reference source that synthesizes the analytic principles of clustering and machine learning to big data and provides an interface between the main disciplines of engineering/technology and the organizational, administrative, and planning abilities of management. Featuring research on topics such as project management, contextual data modeling, and business information systems, this book is ideally designed for engineers, economists, finance officers, marketers, decision makers, business professionals, industry practitioners, academicians, students, and researchers seeking coverage on the implementation of big data and machine learning within specific professional fields.

Data Clustering: Theory, Algorithms, and Applications

Автор: Chaoqun Ma, Guojun Gan, Jianhong Wu
Название: Data Clustering: Theory, Algorithms, and Applications
ISBN: 1611976324 ISBN-13(EAN): 9781611976328
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 12164.00 р.
Наличие на складе: Нет в наличии.

Описание: Data clustering, also known as cluster analysis, is an unsupervised process that divides a set of objects into homogeneous groups. Since the publication of the first edition of this monograph in 2007, development in the area has exploded, especially in clustering algorithms for big data and open-source software for cluster analysis. This second edition reflects these new developments.Data Clustering: Theory, Algorithms, and Applications, Second Edition:covers the basics of data clustering,includes a list of popular clustering algorithms, andprovides program code that helps users implement clustering algorithms.

Self-Learning and Adaptive Algorithms for Business Applications: A Guide to Adaptive Neuro-Fuzzy Systems for Fuzzy Clustering Under Uncertainty Conditions

Автор: Zhengbing Hu, Yevgeniy V. Bodyanskiy, Oleksii Tyshchenko
Название: Self-Learning and Adaptive Algorithms for Business Applications: A Guide to Adaptive Neuro-Fuzzy Systems for Fuzzy Clustering Under Uncertainty Conditions
ISBN: 1838671749 ISBN-13(EAN): 9781838671747
Издательство: Emerald
Рейтинг:
Цена: 9349.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In this guide designed for researchers and students of computer science, readers will find a resource for how to apply methods that work on real-life problems to their challenging applications, and a go-to work that makes fuzzy clustering issues and aspects clear.

A Heuristic Approach to Possibilistic Clustering: Algorithms and Applications

Автор: Dmitri A. Viattchenin
Название: A Heuristic Approach to Possibilistic Clustering: Algorithms and Applications
ISBN: 364244301X ISBN-13(EAN): 9783642443015
Издательство: Springer
Рейтинг:
Цена: 16977.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In a new approach to possibilistic clustering, the sought clustering structure of the set is based directly on the formal definition of fuzzy cluster and possibilistic memberships are determined directly from the values of the pairwise similarity of objects.

Recent Advances in Hybrid Metaheuristics for Data Clustering

Автор: de Sourav, Dey Sandip, Bhattacharyya Siddhartha
Название: Recent Advances in Hybrid Metaheuristics for Data Clustering
ISBN: 1119551595 ISBN-13(EAN): 9781119551591
Издательство: Wiley
Рейтинг:
Цена: 16624.00 р.
Наличие на складе: Поставка под заказ.

Описание:

An authoritative guide to an in-depth analysis of various state-of-the-art data clustering approaches using a range of computational intelligence techniques

Recent Advances in Hybrid Metaheuristics for Data Clustering offers a guide to the fundamentals of various metaheuristics and their application to data clustering. Metaheuristics are designed to tackle complex clustering problems where classical clustering algorithms have failed to be either effective or efficient. The authors--noted experts on the topic--provide a text that can aid in the design and development of hybrid metaheuristics to be applied to data clustering.

The book includes performance analysis of the hybrid metaheuristics in relationship to their conventional counterparts. In addition to providing a review of data clustering, the authors include in-depth analysis of different optimization algorithms. The text offers a step-by-step guide in the build-up of hybrid metaheuristics and to enhance comprehension. In addition, the book contains a range of real-life case studies and their applications. This important text:

  • Includes performance analysis of the hybrid metaheuristics as related to their conventional counterparts
  • Offers an in-depth analysis of a range of optimization algorithms
  • Highlights a review of data clustering
  • Contains a detailed overview of different standard metaheuristics in current use
  • Presents a step-by-step guide to the build-up of hybrid metaheuristics
  • Offers real-life case studies and applications

Written for researchers, students and academics in computer science, mathematics, and engineering, Recent Advances in Hybrid Metaheuristics for Data Clustering provides a text that explores the current data clustering approaches using a range of computational intelligence techniques.

Автор: Fausto Pedro Garcia Marquez
Название: Advanced Multi-Industry Applications of Big Data Clustering and Machine Learning
ISBN: 179981565X ISBN-13(EAN): 9781799815655
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 24948.00 р.
Наличие на складе: Нет в наличии.

Описание: As organizations continue to develop, there is an increasing need for technological methods that can keep up with the rising amount of data and information that is being generated. Machine learning is a tool that has become powerful due to its ability to analyze large amounts of data quickly. Machine learning is one of many technological advancements that is being implemented into a multitude of specialized fields. An extensive study on the execution of these advancements within professional industries is necessary. Advanced Multi-Industry Applications of Big Data Clustering and Machine Learning is an essential reference source that synthesizes the analytic principles of clustering and machine learning to big data and provides an interface between the main disciplines of engineering/technology and the organizational, administrative, and planning abilities of management. Featuring research on topics such as project management, contextual data modeling, and business information systems, this book is ideally designed for engineers, economists, finance officers, marketers, decision makers, business professionals, industry practitioners, academicians, students, and researchers seeking coverage on the implementation of big data and machine learning within specific professional fields.

Comparing Clustering Algorithms for Use with Genomic and Proteomic Data

Автор: Olson Rebecca Ann
Название: Comparing Clustering Algorithms for Use with Genomic and Proteomic Data
ISBN: 1288405332 ISBN-13(EAN): 9781288405336
Издательство: Неизвестно
Рейтинг:
Цена: 10658.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Graph-Based Clustering and Data Visualization Algorithms

Автор: ?gnes Vathy-Fogarassy; J?nos Abonyi
Название: Graph-Based Clustering and Data Visualization Algorithms
ISBN: 1447151577 ISBN-13(EAN): 9781447151579
Издательство: Springer
Рейтинг:
Цена: 8384.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Vector Quantisation and Topology-Based Graph Representation

Graph-Based Clustering Algorithms

Graph-Based Visualisation of High-Dimensional Data

Advances in network clustering and blockmodeling /

Автор: Patrick Doreian
Название: Advances in network clustering and blockmodeling /
ISBN: 1119224705 ISBN-13(EAN): 9781119224709
Издательство: Wiley
Рейтинг:
Цена: 12030.00 р.
Наличие на складе: Поставка под заказ.

Описание:

Provides an overview of the developments and advances in the field of network clustering and blockmodeling over the last 10 years

This book offers an integrated treatment of network clustering and blockmodeling, covering all of the newest approaches and methods that have been developed over the last decade. Presented in a comprehensive manner, it offers the foundations for understanding network structures and processes, and features a wide variety of new techniques addressing issues that occur during the partitioning of networks across multiple disciplines such as community detection, blockmodeling of valued networks, role assignment, and stochastic blockmodeling.

Written by a team of international experts in the field, Advances in Network Clustering and Blockmodeling offers a plethora of diverse perspectives covering topics such as: bibliometric analyses of the network clustering literature; clustering approaches to networks; label propagation for clustering; and treating missing network data before partitioning. It also examines the partitioning of signed networks, multimode networks, and linked networks. A chapter on structured networks and coarsegrained descriptions is presented, along with another on scientific coauthorship networks. The book finishes with a section covering conclusions and directions for future work. In addition, the editors provide numerous tables, figures, case studies, examples, datasets, and more.

  • Offers a clear and insightful look at the state of the art in network clustering and blockmodeling
  • Provides an excellent mix of mathematical rigor and practical application in a comprehensive manner
  • Presents a suite of new methods, procedures, algorithms for partitioning networks, as well as new techniques for visualizing matrix arrays
  • Features numerous examples throughout, enabling readers to gain a better understanding of research methods and to conduct their own research effectively
  • Written by leading contributors in the field of spatial networks analysis

Advances in Network Clustering and Blockmodeling is an ideal book for graduate and undergraduate students taking courses on network analysis or working with networks using real data. It will also benefit researchers and practitioners interested in network analysis.

Partitional clustering algorithms

Название: Partitional clustering algorithms
ISBN: 3319092588 ISBN-13(EAN): 9783319092584
Издательство: Springer
Рейтинг:
Цена: 19591.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book focuses on partitional clustering algorithms, which are commonly used in engineering and computer scientific applications. The goal of this volume is to summarize the state-of-the-art in partitional clustering. The book includes such topics as center-based clustering, competitive learning clustering and density-based clustering.

Автор: Saha, Sriparna , Acharya, Sudipta
Название: Multi-Objective Clustering Algorithms
ISBN: 1138597244 ISBN-13(EAN): 9781138597242
Издательство: Taylor&Francis
Рейтинг:
Цена: 17609.00 р.
Наличие на складе: Поставка под заказ.

Описание: This book describes the different concepts related to multi-objective clustering and elaborate the steps of some recently developed multi-objective clustering techniques. It concentrates on three domains namely information retrieval, bioinformatics, and image segmentation to illustrate the utility of multi-objective clustering techniques.

Heuristic Approach to Possibilistic Clustering: Algorithms a

Автор: Viattchenin Dmitri A
Название: Heuristic Approach to Possibilistic Clustering: Algorithms a
ISBN: 3642355358 ISBN-13(EAN): 9783642355356
Издательство: Springer
Рейтинг:
Цена: 19591.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In a new approach to possibilistic clustering, the sought clustering structure of the set is based directly on the formal definition of fuzzy cluster and possibilistic memberships are determined directly from the values of the pairwise similarity of objects.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия