Non-Convex Multi-Objective Optimization, Pardalos Panos M., Zilinskas Antanas, Zilinskas Julius
Автор: Stephen Boyd Название: Convex Optimization ISBN: 0521833787 ISBN-13(EAN): 9780521833783 Издательство: Cambridge Academ Рейтинг: Цена: 17950.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The focus of this book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.
Автор: Boyd Stephen, Busseti Enzo, Diamond Steven Название: Multi-Period Trading Via Convex Optimization ISBN: 1680833286 ISBN-13(EAN): 9781680833287 Издательство: Неизвестно Рейтинг: Цена: 8966.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Multi-Period Trading via Convex Optimization collects in one place the basic definitions, a careful description of the model, and discussion of how convex optimization can be used in multi-period trading, all in a common notation and framework.
Автор: Borwein, Jonathan M. Lewis, Adrian S. (university Of Waterloo) Название: Convex analysis and nonlinear optimization ISBN: 1441921273 ISBN-13(EAN): 9781441921277 Издательство: Springer Рейтинг: Цена: 8378.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Optimization is a rich and thriving mathematical discipline, and the underlying theory of current computational optimization techniques grows ever more sophisticated. This new edition adds material on semismooth optimization, as well as several new proofs.
Автор: Sorin-Mihai Grad Название: Vector Optimization and Monotone Operators via Convex Duality ISBN: 3319361902 ISBN-13(EAN): 9783319361901 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book investigates several duality approaches for vector optimization problems, while also comparing them. Special attention is paid to duality for linear vector optimization problems, for which a vector dual that avoids the shortcomings of the classical ones is proposed.
Автор: Panos M. Pardalos; Antanas ?ilinskas; Julius ?ilin Название: Non-Convex Multi-Objective Optimization ISBN: 3319610058 ISBN-13(EAN): 9783319610054 Издательство: Springer Рейтинг: Цена: 12577.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Recent results on non-convex multi-objective optimization problems and methods are presented in this book, with particular attention to expensive black-box objective functions.
Автор: Juditsky Anatoli, Nemirovski Arkadi Название: Statistical Inference Via Convex Optimization ISBN: 0691197296 ISBN-13(EAN): 9780691197296 Издательство: Wiley Рейтинг: Цена: 13939.00 р. Наличие на складе: Поставка под заказ.
Описание:
This authoritative book draws on the latest research to explore the interplay of high-dimensional statistics with optimization. Through an accessible analysis of fundamental problems of hypothesis testing and signal recovery, Anatoli Juditsky and Arkadi Nemirovski show how convex optimization theory can be used to devise and analyze near-optimal statistical inferences.
Statistical Inference via Convex Optimization is an essential resource for optimization specialists who are new to statistics and its applications, and for data scientists who want to improve their optimization methods. Juditsky and Nemirovski provide the first systematic treatment of the statistical techniques that have arisen from advances in the theory of optimization. They focus on four well-known statistical problems--sparse recovery, hypothesis testing, and recovery from indirect observations of both signals and functions of signals--demonstrating how they can be solved more efficiently as convex optimization problems. The emphasis throughout is on achieving the best possible statistical performance. The construction of inference routines and the quantification of their statistical performance are given by efficient computation rather than by analytical derivation typical of more conventional statistical approaches. In addition to being computation-friendly, the methods described in this book enable practitioners to handle numerous situations too difficult for closed analytical form analysis, such as composite hypothesis testing and signal recovery in inverse problems.
Statistical Inference via Convex Optimization features exercises with solutions along with extensive appendixes, making it ideal for use as a graduate text.
Автор: Roman G. Strongin; Yaroslav D. Sergeyev Название: Global Optimization with Non-Convex Constraints ISBN: 1461371171 ISBN-13(EAN): 9781461371175 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Roman G. Strongin; Yaroslav D. Sergeyev Название: Global Optimization with Non-Convex Constraints ISBN: 0792364902 ISBN-13(EAN): 9780792364900 Издательство: Springer Рейтинг: Цена: 43184.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Presents a new approach to global non-convex constrained optimization. Problem dimensionality is reduced via space-filling curves and to economize the search, constraint is accounted separately (penalties are not employed). The multicriteria case is also considered.
Автор: Brinkhuis Jan Название: Convex Analysis for Optimization: A Unified Approach ISBN: 3030418030 ISBN-13(EAN): 9783030418038 Издательство: Springer Рейтинг: Цена: 11878.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: It starts with the concept of convex sets, their primal description, constructions, topological properties and dual description, and then moves on to convex functions and the fundamental principles of convex optimization and their use in the complete analysis of convex optimization problems by means of a systematic four-step method.
Автор: Nesterov Название: Lectures on Convex Optimization ISBN: 3319915770 ISBN-13(EAN): 9783319915777 Издательство: Springer Рейтинг: Цена: 8384.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The first elementary exposition of core ideas of complexity theory for convex optimization, this book explores optimal methods and lower complexity bounds for smooth and non-smooth convex optimization. Also covers polynomial-time interior-point methods.
Автор: Nisheeth K. Vishnoi Название: Algorithms for Convex Optimization ISBN: 1108482023 ISBN-13(EAN): 9781108482028 Издательство: Cambridge Academ Рейтинг: Цена: 13147.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Algorithms for Convex Optimization are the workhorses of data-driven, technological advancements in machine learning and artificial intelligence. This concise, modern guide to deriving these algorithms is self-contained and accessible to advanced students, practitioners, and researchers in computer science, operations research, and data science.
Автор: Alexander M. Rubinov; Xiao-qi Yang Название: Lagrange-type Functions in Constrained Non-Convex Optimization ISBN: 1461348218 ISBN-13(EAN): 9781461348214 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Thus the question arises how to generalize classical Lagrange and penalty functions, in order to obtain an appropriate scheme for reducing constrained optimiza- tion problems to unconstrained ones that will be suitable for sufficiently broad classes of optimization problems from both the theoretical and computational viewpoints.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru