Algorithms for Convex Optimization, Nisheeth K. Vishnoi
Автор: Stephen Boyd Название: Convex Optimization ISBN: 0521833787 ISBN-13(EAN): 9780521833783 Издательство: Cambridge Academ Рейтинг: Цена: 17950.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The focus of this book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.
Автор: Alexander M. Rubinov; Xiao-qi Yang Название: Lagrange-type Functions in Constrained Non-Convex Optimization ISBN: 1461348218 ISBN-13(EAN): 9781461348214 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Thus the question arises how to generalize classical Lagrange and penalty functions, in order to obtain an appropriate scheme for reducing constrained optimiza- tion problems to unconstrained ones that will be suitable for sufficiently broad classes of optimization problems from both the theoretical and computational viewpoints.
Автор: Vishnoi, Nisheeth K., Название: Algorithms for convex optimization / ISBN: 1108741770 ISBN-13(EAN): 9781108741774 Издательство: Cambridge Academ Рейтинг: Цена: 5386.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Algorithms for Convex Optimization are the workhorses of data-driven, technological advancements in machine learning and artificial intelligence. This concise, modern guide to deriving these algorithms is self-contained and accessible to advanced students, practitioners, and researchers in computer science, operations research, and data science.
Автор: Juditsky Anatoli, Nemirovski Arkadi Название: Statistical Inference Via Convex Optimization ISBN: 0691197296 ISBN-13(EAN): 9780691197296 Издательство: Wiley Рейтинг: Цена: 13939.00 р. Наличие на складе: Поставка под заказ.
Описание:
This authoritative book draws on the latest research to explore the interplay of high-dimensional statistics with optimization. Through an accessible analysis of fundamental problems of hypothesis testing and signal recovery, Anatoli Juditsky and Arkadi Nemirovski show how convex optimization theory can be used to devise and analyze near-optimal statistical inferences.
Statistical Inference via Convex Optimization is an essential resource for optimization specialists who are new to statistics and its applications, and for data scientists who want to improve their optimization methods. Juditsky and Nemirovski provide the first systematic treatment of the statistical techniques that have arisen from advances in the theory of optimization. They focus on four well-known statistical problems--sparse recovery, hypothesis testing, and recovery from indirect observations of both signals and functions of signals--demonstrating how they can be solved more efficiently as convex optimization problems. The emphasis throughout is on achieving the best possible statistical performance. The construction of inference routines and the quantification of their statistical performance are given by efficient computation rather than by analytical derivation typical of more conventional statistical approaches. In addition to being computation-friendly, the methods described in this book enable practitioners to handle numerous situations too difficult for closed analytical form analysis, such as composite hypothesis testing and signal recovery in inverse problems.
Statistical Inference via Convex Optimization features exercises with solutions along with extensive appendixes, making it ideal for use as a graduate text.
Автор: Zaslavski Alexander J. Название: Convex Optimization with Computational Errors ISBN: 3030378241 ISBN-13(EAN): 9783030378240 Издательство: Springer Цена: 12577.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Preface.- 1. Introduction.- 2. Subgradient Projection Algorithm.- 3. The Mirror Descent Algorithm.- 4. Gradient Algorithm with a Smooth Objective Function.- 5. An Extension of the Gradient Algorithm.- 6. Continuous Subgradient Method.- 7. An optimization problems with a composite objective function.- 8. A zero-sum game with two-players.- 9. PDA-based method for convex optimization.- 10 Minimization of quasiconvex functions.-11. Minimization of sharp weakly convex functions.-12. A Projected Subgradient Method for Nonsmooth Problems.- References. -Index.
Автор: Sorin-Mihai Grad Название: Vector Optimization and Monotone Operators via Convex Duality ISBN: 3319361902 ISBN-13(EAN): 9783319361901 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book investigates several duality approaches for vector optimization problems, while also comparing them. Special attention is paid to duality for linear vector optimization problems, for which a vector dual that avoids the shortcomings of the classical ones is proposed.
Автор: Nesterov Название: Lectures on Convex Optimization ISBN: 3319915770 ISBN-13(EAN): 9783319915777 Издательство: Springer Рейтинг: Цена: 8384.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The first elementary exposition of core ideas of complexity theory for convex optimization, this book explores optimal methods and lower complexity bounds for smooth and non-smooth convex optimization. Also covers polynomial-time interior-point methods.
Автор: Roman G. Strongin; Yaroslav D. Sergeyev Название: Global Optimization with Non-Convex Constraints ISBN: 0792364902 ISBN-13(EAN): 9780792364900 Издательство: Springer Рейтинг: Цена: 43184.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Presents a new approach to global non-convex constrained optimization. Problem dimensionality is reduced via space-filling curves and to economize the search, constraint is accounted separately (penalties are not employed). The multicriteria case is also considered.
Автор: Boyd Stephen, Busseti Enzo, Diamond Steven Название: Multi-Period Trading Via Convex Optimization ISBN: 1680833286 ISBN-13(EAN): 9781680833287 Издательство: Неизвестно Рейтинг: Цена: 8966.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Multi-Period Trading via Convex Optimization collects in one place the basic definitions, a careful description of the model, and discussion of how convex optimization can be used in multi-period trading, all in a common notation and framework.
Автор: Borwein, Jonathan M. Lewis, Adrian S. (university Of Waterloo) Название: Convex analysis and nonlinear optimization ISBN: 1441921273 ISBN-13(EAN): 9781441921277 Издательство: Springer Рейтинг: Цена: 8378.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Optimization is a rich and thriving mathematical discipline, and the underlying theory of current computational optimization techniques grows ever more sophisticated. This new edition adds material on semismooth optimization, as well as several new proofs.
Автор: Aram Arutyunov, Valeri Obukhovskii Название: Convex and Set-Valued Analysis ISBN: 3110460289 ISBN-13(EAN): 9783110460285 Издательство: Walter de Gruyter Рейтинг: Цена: 11148.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This textbook is devoted to a compressed and self-contained exposition of two important parts of contemporary mathematics: convex and set-valued analysis. In the first part, properties of convex sets, the theory of separation, convex functions and their differentiability, properties of convex cones in finite- and infinite-dimensional spaces are discussed. The second part covers some important parts of set-valued analysis. There the properties of the Hausdorff metric and various continuity concepts of set-valued maps are considered. The great attention is paid also to measurable set-valued functions, continuous, Lipschitz and some special types of selections, fixed point and coincidence theorems, covering set-valued maps, topological degree theory and differential inclusions. Contents: PrefacePart I: Convex analysisConvex sets and their propertiesThe convex hull of a set. The interior of convex setsThe affine hull of sets. The relative interior of convex setsSeparation theorems for convex setsConvex functionsClosedness, boundedness, continuity, and Lipschitz property of convex functionsConjugate functionsSupport functionsDifferentiability of convex functions and the subdifferentialConvex conesA little more about convex cones in infinite-dimensional spacesA problem of linear programmingMore about convex sets and convex hullsPart II: Set-valued analysisIntroduction to the theory of topological and metric spacesThe Hausdorff metric and the distance between setsSome fine properties of the Hausdorff metricSet-valued maps. Upper semicontinuous and lower semicontinuous set-valued mapsA base of topology of the spaceHc(X)Measurable set-valued maps. Measurable selections and measurable choice theoremsThe superposition set-valued operatorThe Michael theorem and continuous selections. Lipschitz selections. Single-valued approximationsSpecial selections of set-valued mapsDifferential inclusionsFixed points and coincidences of maps in metric spacesStability of coincidence points and properties of covering mapsTopological degree and fixed points of set-valued maps in Banach spacesExistence results for differential inclusions via the fixed point methodNotationBibliographyIndex
Автор: Joshua Adam Taylor Название: Convex Optimization of Power Systems ISBN: 1107076870 ISBN-13(EAN): 9781107076877 Издательство: Cambridge Academ Рейтинг: Цена: 12038.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This mathematically rigorous guide to convex optimization for power systems engineering includes convex models for a variety of real-world applications, and a selection of problems and practical examples. An invaluable resource for students and researchers from industry and academia in power systems, optimization, and control.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru