Ulam Type Stability, Brzdęk Janusz, Popa Dorian, Rassias Themistocles M.
Автор: Janusz Brzd?k; Dorian Popa; Themistocles M. Rassia Название: Ulam Type Stability ISBN: 3030289710 ISBN-13(EAN): 9783030289713 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book is an outcome of two Conferences on Ulam Type Stability (CUTS) organized in 2016 (July 4-9, Cluj-Napoca, Romania) and in 2018 (October 8-13, 2018, Timisoara, Romania). It presents up-to-date insightful perspective and very resent research results on Ulam type stability of various classes of linear and nonlinear operators; in particular on the stability of many functional equations in a single and several variables (also in the lattice environments, Orlicz spaces, quasi-b-Banach spaces, and 2-Banach spaces) and some orthogonality relations (e.g., of Birkhoff–James). A variety of approaches are presented, but a particular emphasis is given to that of fixed points, with some new fixed point results and their applications provided. Besides these several other topics are considered that are somehow related to the Ulam stability such as: invariant means, geometry of Banach function modules, queueing systems, semi-inner products and parapreseminorms, subdominant eigenvalue location of a bordered diagonal matrix and optimal forward contract design for inventory. New directions and several open problems regarding stability and non-stability concepts are included.Ideal for use as a reference or in a seminar, this book is aimed toward graduate students, scientists and engineers working in functional equations, difference equations, operator theory, functional analysis, approximation theory, optimization theory, and fixed point theory who wish to be introduced to a wide spectrum of relevant theories, methods and applications leading to interdisciplinary research. It advances the possibilities for future research through an extensive bibliography and a large spectrum of techniques, methods and applications.
Автор: Tripathy Arun Kumar Название: Hyers-Ulam Stability of Ordinary Differential Equations ISBN: 0367636670 ISBN-13(EAN): 9780367636678 Издательство: Taylor&Francis Рейтинг: Цена: 22202.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book discusses new developments in Hyers-Ulam Stability of Ordinary Differential Equations which says that when a solution of differential equation satisfies an inequality in a neighbourhood of origin, then there exists another solution in the same neighbourhood which is very close to the said solution.
Автор: Giovanni Gallavotti Название: The Fermi-Pasta-Ulam Problem ISBN: 3642092098 ISBN-13(EAN): 9783642092091 Издательство: Springer Рейтинг: Цена: 15672.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This volume reviews the current understanding of the Fermi-Pasta-Ulam (FPU) Problem without trying to force coherence on differing perspectives on the same problem by various groups or approaches.
Описание: Treats the dynamics of both iteration of functions and solutions of ordinary differential equations. This book introduces various concepts for iteration of functions where the geometry is simpler, but results are interpreted for differential equations. It concentrates on properties of the whole system or subsets of the system.
Описание: The authors consider the energy super critical semilinear heat equation $\partial _{t}u=\Delta u u^{p}, x\in \mathbb{R}^3, p>5.$. The authors draws a route map for the derivation of the existence and stability of self-similar blow up in nonradial energy super critical settings.
Описание: The author shows that the finite time type II blow up solutions for the energy critical nonlinear wave equation $ \Box u = -u^5 $ on $\mathbb R^3+1$ constructed in Krieger, Schlag, and Tataru (2009) and Krieger and Schlag (2014) are stable along a co-dimension three manifold of radial data perturbations in a suitable topology, provided the scaling parameter $\lambda (t) = t^-1-\nu $ is sufficiently close to the self-similar rate, i. e. $\nu >0$ is sufficiently small. Our method is based on Fourier techniques adapted to time dependent wave operators of the form $ -\partial _t^2 + \partial _r^2 + \frac 2r\partial _r +V(\lambda (t)r) $ for suitable monotone scaling parameters $\lambda (t)$ and potentials $V(r)$ with a resonance at zero.
Автор: Dimitri Breda; Stefano Maset; Rossana Vermiglio Название: Stability of Linear Delay Differential Equations ISBN: 1493921061 ISBN-13(EAN): 9781493921065 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Todd Kapitula; Keith Promislow Название: Spectral and Dynamical Stability of Nonlinear Waves ISBN: 1461469945 ISBN-13(EAN): 9781461469940 Издательство: Springer Рейтинг: Цена: 11878.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book unifies the dynamical systems and functional analysis approaches to the linear and nonlinear stability of waves. It synthesizes the fundamental ideas of the past two decades of research, carefully balancing theory and application.
Автор: Michael I. Gil` Название: Stability of Finite and Infinite Dimensional Systems ISBN: 1461375509 ISBN-13(EAN): 9781461375500 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The aim of Stability of Finite and Infinite Dimensional Systems is to provide new tools for specialists in control system theory, stability theory of ordinary and partial differential equations, and differential-delay equations.
Автор: Lakshmikantham Vangipuram, Leela Srinivasa, Martynyuk Anatoly A. Название: Stability Analysis of Nonlinear Systems ISBN: 3319800906 ISBN-13(EAN): 9783319800905 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The book investigates stability theory in terms of two different measure, exhibiting the advantage of employing families of Lyapunov functions and treats the theory of a variety of inequalities, clearly bringing out the underlying theme.
Описание: This book is devoted to oscillation/nonoscillation, exponential stability, instability, existence of solutions with specific asymptotic properties for the second and the higher order functional differential equations (FDEs). These equations include delay differential equations (DDEs), integro-differential equations (IDEs).
Автор: Wolfgang Hackbusch Название: The Concept of Stability in Numerical Mathematics ISBN: 3662513714 ISBN-13(EAN): 9783662513712 Издательство: Springer Рейтинг: Цена: 11878.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book offers a self-contained presentation of aspects of stability in numerical mathematics. It compares and characterizes stability in different subfields of numerical mathematics.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru