Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Nonparametric Statistics: 4th Isnps, Salerno, Italy, June 2018, La Rocca Michele, Liseo Brunero, Salmaso Luigi


Варианты приобретения
Цена: 27950.00р.
Кол-во:
 о цене
Наличие: Отсутствует. Возможна поставка под заказ.

При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: La Rocca Michele, Liseo Brunero, Salmaso Luigi
Название:  Nonparametric Statistics: 4th Isnps, Salerno, Italy, June 2018
ISBN: 9783030573058
Издательство: Springer
Классификация:


ISBN-10: 3030573052
Обложка/Формат: Hardcover
Страницы: 547
Вес: 0.91 кг.
Дата издания: 13.12.2020
Язык: English
Размер: 23.90 x 16.23 x 2.51 cm
Ссылка на Издательство: Link
Поставляется из: Германии
Описание: This book is intended for periodontal residents and practicing periodontists who wish to incorporate the principles of moderate sedation into daily practice. Comprehensive airway management and rescue skills are then documented in detail so that the patient may be properly managed in the event that the sedation progresses beyond the intended level.


Автор: Larry Wasserman
Название: All of Nonparametric Statistics
ISBN: 1441920447 ISBN-13(EAN): 9781441920447
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: It covers a wide range of topics including the bootstrap, the nonparametric delta method, nonparametric regression, density estimation, orthogonal function methods, minimax estimation, nonparametric confidence sets, and wavelets.

Fundamentals of Nonparametric Bayesian Inference

Автор: Ghosal, Subhashis.
Название: Fundamentals of Nonparametric Bayesian Inference
ISBN: 0521878268 ISBN-13(EAN): 9780521878265
Издательство: Cambridge Academ
Рейтинг:
Цена: 12989.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Written by top researchers, this self-contained text is the authoritative account of Bayesian nonparametrics, a nearly universal framework for inference in statistics and machine learning, with practical use in all areas of science, including economics and biostatistics. Appendices with prerequisites and numerous exercises support its use for graduate courses.

Introduction to Nonparametric Statistics for the Biological Sciences Using R

Автор: Macfarland Thomas W., Yates Jan M.
Название: Introduction to Nonparametric Statistics for the Biological Sciences Using R
ISBN: 3319808567 ISBN-13(EAN): 9783319808567
Издательство: Springer
Рейтинг:
Цена: 9083.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: 1 Nonparametric Statistics for the Biological Sciences1.1 Purpose of This Lesson 1.2 Data Types 1.2.1 Nominal Data 1.2.2 Ordinal Data1.2.3 Interval Data and Ratio Data1.3 Graphical Presentation of Populations1.3.1 Samples that Exhibit Normal Distribution1.3.2 Samples that Fail to Exhibit Normal Distribution1.4 R and Nonparametric Analyses1.4.1 Precision of Scales: Ordinal v Interval1.4.2 Deviation from Normal Distribution1.4.3 Sample Size: Number of Subjects for Each Breakout Group1.5 Definition of Nonparametric Analysis1.6 Statistical Tests and Graphics Associated with Distribution Patterns1.7 Prepare to Exit, Save, and Later Retrieve This R Session
2 Sign Test2.1 Background on This Lesson2.1.1 Description of the Data2.1.2 Null Hypothesis (Ho)2.2 Data Import of a .csv Spreadsheet-Type Data File into R2.3 Organize the Data and Display the Code Book2.4 Conduct a Visual Data Check2.5 Descriptive Analysis of the Data2.6 Conduct the Statistical Analysis2.7 Summary 2.8 Prepare to Exit, Save, and Later Retrieve This R Session
3 Chi-Square3.1 Background on This Lesson3.1.1 Description of the Data3.1.2 Null Hypothesis (Ho)3.2 Data Import of a .csv Spreadsheet-Type Data File into R3.3 Organize the Data and Display the Code Book3.4 Conduct a Visual Data Check3.5 Descriptive Analysis of the Data3.6 Conduct the Statistical Analysis3.7 Summary3.8 Addendum: Calculate the Chi-Square Statistic from Contingency Tables3.9 Prepare to Exit, Save, and Later Retrieve This R Session
4 Mann-Whitney U Test4.1 Background on This Lesson4.1.1 Description of the Data4.1.2 Null Hypothesis (Ho)4.2 Data Import of a .csv Spreadsheet-Type Data File into R4.3 Organize the Data and Display the Code Book4.4 Conduct a Visual Data Check4.5 Descriptive Analysis of the Data4.6 Conduct the Statistical Analysis4.7 Summary4.8 Addendum: Stacked Data v Unstacked Data4.9 Prepare to Exit, Save, and Later Retrieve This R Session
5 Wilcoxon Matched-Pairs Signed-Ranks Test5.1 Background on This Lesson5.1.1 Description of the Data5.1.2 Null Hypothesis (Ho)5.2 Data Import of a .csv Spreadsheet-Type Data File into R5.3 Organize the Data and Display the Code Book5.4 Conduct a Visual Data Check5.5 Descriptive Analysis of the Data5.6 Conduct the Statistical Analysis5.7 SummaryTest5.9 Addendum 2: Similar Functions from Different Packages5.10 Addendum 3: Nonparamteric v Parametric Confirmation of Outcomes5.11 Prepare to Exit, Save, and Later Retrieve This R Session
6 Kruskal-Wallis H-Test for Oneway Analysis of Variance (ANOVA) by Ranks6.1 Background on This Lesson6.1.1 Description of the Data6.1.2 Null Hypothesis (Ho)6.2 Data Import of a .csv Spreadsheet-Type Data File into R6.3 Organize the Data and Display the Code Book6.4 Conduct a Visual Data Check6.5 Descriptive Analysis of the Data6.6 Conduct the Statistical Analysis6.7 Summary6.8 Addendum: Comparison of Kruskal-Wallis Test Differences by Breakout Group6.9 Prepare to Exit, Save, and Later Retrieve This R Session
7 Friedman Two Way A

Nonparametric Statistics: 2nd Isnps, Cбdiz, June 2014

Автор: Cao Ricardo, Gonzбlez Manteiga Wenceslao, Romo Juan
Название: Nonparametric Statistics: 2nd Isnps, Cбdiz, June 2014
ISBN: 3319823884 ISBN-13(EAN): 9783319823881
Издательство: Springer
Рейтинг:
Цена: 26194.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: S. Chakraborty and S. Datta: Robust Estimation in AFT Models and a Covariate Adjusted Mann-Whitney Statistic for Comparing Two Sojourn Times.- G. Benini, S. Sperlich and R. Theler: Varying Coefficient Models Revisited: An Econometric View.- J. Hidalgo and V. Dalla: Testing for Breaks in Regression Models with Dependent Data.- D. Bagkavos, P. N. Patil and A. T. A. Wood: A Numerical Study of the Power Function of a New Symmetry Test.- N. Markovich: Nonparametric Estimation of Heavy-Tailed Density by the Discrepancy Method.- S. Hudecova, M. Huskova and S. Meintanis: Change Detection in INARCH Time Series of Counts.- M. P. Espinosay, E. Ferreiraz and W. Stute: Discrimination, Binomials and Glass Ceiling Effects.- A. Antoniadis, X. Brossat, Y. Goude, J.-M. Poggi and V. Thouvenot: Automatic Component Selection in Additive Modeling of French National Electricity Load Forecasting.- S. Bonnini: Nonparametric Test on Process Capability.- E. Boj and T. Costa: Claim Reserving using Distance-Based Generalized Linear Models.- A. V. Dobrovidov: Regularization of Positive Signal Nonparametric Filtering in Multiplicative Observation Model.- V. Patrangenaru, K. D. Yao and R. Guo: Extrinsic Means and Antimeans.- G. Koshkin and V. Smagin: Kalman Filtering and Forecasting Algorithms with Use of Nonparametric Functional Estimators.- A. Meneses, S. Naya, I. Lopez-de-Ullibarri and J. Tarro-Saavedra: Nonparametric Method for Estimating the Distribution of Time to Failure of Engineering Materials.- G. J. Szekely and M. L. Rizzo: Partial Distance Correlation.

An Introduction to nonparametric statistics

Автор: Kolassa, John E.
Название: An Introduction to nonparametric statistics
ISBN: 0367194848 ISBN-13(EAN): 9780367194840
Издательство: Taylor&Francis
Рейтинг:
Цена: 14086.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents the theory and practice of non-parametric statistics, with an emphasis on motivating principals. The course is a combination of traditional rank based methods and more computationally-intensive topics like density estimation, kernel smoothers in regression, and robustness. The text is aimed at MS students.

Nonparametric Statistics for Social and Behavioral Sciences

Автор: Kraska-MIller, M.
Название: Nonparametric Statistics for Social and Behavioral Sciences
ISBN: 0367379104 ISBN-13(EAN): 9780367379100
Издательство: Taylor&Francis
Рейтинг:
Цена: 9492.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Incorporating a hands-on pedagogical approach, Nonparametric Statistics for Social and Behavioral Sciences presents the concepts, principles, and methods used in performing many nonparametric procedures. It also demonstrates practical applications of the most common nonparametric procedures using IBM's SPSS software.





This text is the only current nonparametric book written specifically for students in the behavioral and social sciences. Emphasizing sound research designs, appropriate statistical analyses, and accurate interpretations of results, the text:









  • Explains a conceptual framework for each statistical procedure


  • Presents examples of relevant research problems, associated research questions, and hypotheses that precede each procedure


  • Details SPSS paths for conducting various analyses


  • Discusses the interpretations of statistical results and conclusions of the research






With minimal coverage of formulas, the book takes a nonmathematical approach to nonparametric data analysis procedures and shows students how they are used in research contexts. Each chapter includes examples, exercises, and SPSS screen shots illustrating steps of the statistical procedures and resulting output.

Categorical and Nonparametric Data Analysis: Choosing the Best Statistical Technique

Автор: Nussbaum E. Michael
Название: Categorical and Nonparametric Data Analysis: Choosing the Best Statistical Technique
ISBN: 1848726031 ISBN-13(EAN): 9781848726031
Издательство: Taylor&Francis
Рейтинг:
Цена: 27562.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Featuring in-depth coverage of categorical and nonparametric statistics, this book provides a conceptual framework for choosing the most appropriate type of test in various research scenarios. Class tested at the University of Nevada, the book's clear explanations of the underlying assumptions, computer simulations, and Exploring the Concept boxes help reduce reader anxiety. Problems inspired by actual studies provide meaningful illustrations of the techniques. The underlying assumptions of each test and the factors that impact validity and statistical power are reviewed so readers can explain their assumptions and how tests work in future publications. Numerous examples from psychology, education, and other social sciences demonstrate varied applications of the material. Basic statistics and probability are reviewed for those who need a refresher. Mathematical derivations are placed in optional appendices for those interested in this detailed coverage.

Highlights include the following:

  • Unique coverage of categorical and nonparametric statistics better prepares readers to select the best technique for their particular research project; however, some chapters can be omitted entirely if preferred.
  • Step-by-step examples of each test help readers see how the material is applied in a variety of disciplines.
  • Although the book can be used with any program, examples of how to use the tests in SPSS and Excel foster conceptual understanding.
  • Exploring the Concept boxes integrated throughout prompt students to review key material and draw links between the concepts to deepen understanding.
  • Problems in each chapter help readers test their understanding of the material.
  • Emphasis on selecting tests that maximize power helps readers avoid "marginally" significant results.
  • Website (www.routledge.com/9781138787827) features datasets for the book's examples and problems, and for the instructor, PowerPoint slides, sample syllabi, answers to the even-numbered problems, and Excel data sets for lecture purposes.

Intended for individual or combined graduate or advanced undergraduate courses in categorical and nonparametric data analysis, cross-classified data analysis, advanced statistics and/or quantitative techniques taught in psychology, education, human development, sociology, political science, and other social and life sciences, the book also appeals to researchers in these disciplines. The nonparametric chapters can be deleted if preferred. Prerequisites include knowledge of t tests and ANOVA.

Nonparametric Inference on Manifolds

Автор: Bhattacharya
Название: Nonparametric Inference on Manifolds
ISBN: 1107484316 ISBN-13(EAN): 9781107484313
Издательство: Cambridge Academ
Рейтинг:
Цена: 6019.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Ideal for statisticians, this book will also interest probabilists, mathematicians, computer scientists, and morphometricians with mathematical training. It presents a systematic introduction to a general nonparametric theory of statistics on manifolds, with emphasis on manifolds of shapes. The theory has important applications in medical diagnostics, image analysis and machine vision.

Categorical and Nonparametric Data Analysis

Автор: Nussbaum E Michael
Название: Categorical and Nonparametric Data Analysis
ISBN: 1138787825 ISBN-13(EAN): 9781138787827
Издательство: Taylor&Francis
Рейтинг:
Цена: 12248.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Featuring in-depth coverage of categorical and nonparametric statistics, this book provides a conceptual framework for choosing the most appropriate type of test in various research scenarios. Class tested at the University of Nevada, the book's clear explanations of the underlying assumptions, computer simulations, and Exploring the Concept boxes help reduce reader anxiety. Problems inspired by actual studies provide meaningful illustrations of the techniques. The underlying assumptions of each test and the factors that impact validity and statistical power are reviewed so readers can explain their assumptions and how tests work in future publications. Numerous examples from psychology, education, and other social sciences demonstrate varied applications of the material. Basic statistics and probability are reviewed for those who need a refresher. Mathematical derivations are placed in optional appendices for those interested in this detailed coverage. Highlights include the following: Unique coverage of categorical and nonparametric statistics better prepares readers to select the best technique for their particular research project; however, some chapters can be omitted entirely if preferred. Step-by-step examples of each test help readers see how the material is applied in a variety of disciplines.  Although the book can be used with any program, examples of how to use the tests in SPSS and Excel foster conceptual understanding. Exploring the Concept boxes integrated throughout prompt students to review key material and draw links between the concepts to deepen understanding.  Problems in each chapter help readers test their understanding of the material.  Emphasis on selecting tests that maximize power helps readers avoid "marginally" significant results.  Website (www.routledge.com/9781138787827) features datasets for the book's examples and problems, and for the instructor, PowerPoint slides, sample syllabi, answers to the even-numbered problems, and Excel data sets for lecture purposes. Intended for individual or combined graduate or advanced undergraduate courses in categorical and nonparametric data analysis, cross-classified data analysis, advanced statistics and/or quantitative techniques taught in psychology, education, human development, sociology, political science, and other social and life sciences, the book also appeals to researchers in these disciplines. The nonparametric chapters can be deleted if preferred. Prerequisites include knowledge of t tests and ANOVA.

Nonparametric Statistics: 4th ISNPS, Salerno, Italy, June 2018

Автор: La Rocca Michele, Liseo Brunero, Salmaso Luigi
Название: Nonparametric Statistics: 4th ISNPS, Salerno, Italy, June 2018
ISBN: 3030573087 ISBN-13(EAN): 9783030573089
Издательство: Springer
Рейтинг:
Цена: 27950.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Preface.- Portfolio optimisation via graphical least squares estimation (Saeed Aldahmani, Hongsheng Dai, Qiao-Zhen Zhang and Marialuisa Restaino).- Change of Measure Applications in Nonparametric Statistics (Mayer Alvo).- Choosing between weekly and monthly volatility drivers within a Double Asymmetric GARCH-MIDAS model (Alessandra Amendola, Vincenzo Candila and Giampiero M. Gallo).- Goodness-of-fit test for the baseline hazard rate (Anfriani, A. and Butucea, C. and Gerardin E. and Jeantheau, T. and Lecleire U.).- Permutation tests for multivariate stratified data: synchronized or unsynchronized permutations? (Rosa Arboretti, Eleonora Carrozzo and Luigi Salmaso).- An extension of the dgLARS method to high-dimensional relative risk regression models (Luigi Augugliaro, Ernst C. Wit and Angelo M. Mineo).- A kernel goodness-of-fit test for maximum likelihood density estimates of normal mixtures. (Dimitrios Bagkavos and Prakash N. Patil)- Robust estimation of sparse signal with unknown sparsity cluster value (Eduard Belitser, Nurzhan Nurushev, and Paulo Serra).- Test for sign effect in intertemporal choice experiments: a nonparametric solution (Stefano Bonnini and Isabel Maria Parra Oller).- Nonparametric first-order analysis of spatial and spatio-temporal point processes (M.I. Borrajo, I. Fuentes-Santos and W. González-Manteiga).- Bayesian nonparametric prediction with multi-sample data (Federico Camerlenghi, Antonio Lijoi and Igor Prьnster).- Algorithm for Automatic Description of Historical Series of Forecast Error in Electrical Power Grid (Gaia Ceresa, Andrea Pitto, Diego Cirio and Nicolas Omont).- Linear wavelet estimation in regression with additive and multiplicative noise (Christophe Chesneau, Junke Kou and Fabien Navarro).- Speeding up algebraic-based sampling via permutations (Francesca Romana Crucinio and Roberto Fontana).- Obstacle Problems For Nonlocal Operators: A Brief Overview (Donatella Danielli, Arshak Petrosyan, and Camelia A. Pop).- Low and high resonance components restoration in multichannel data (Daniela De Canditiis and Italia De Feis).- Kernel circular deconvolution density estimation (Marco Di Marzio, Stefania Fensore, Agnese Panzera, Charles C. Taylor).- Asymptotic for Relative Frequency when Population is Driven by Arbitrary Unknown Evolution (Silvano Fiorin).- Semantic keywords clustering to optimize Text Ads campaigns (Pietro Fodra, Emmanuel Pasquet, Guillaume Mohr, Bruno Goutorbe, and Matthieu Cornec).- A Note on Robust Estimation of the Extremal Index (M. Ivette Gomes, Cristina Miranda and Manuela Souto de Miranda).- Multivariate permutation tests for ordered categorical data (Huiting Huang, Fortunato Pesarin, Rosa Arboretti, Riccardo Ceccato).- Smooth nonparametric survival analysis (Dimitrios Ioannides and Dimitrios Bagkavos).- Density estimation using multiscale local polynomial transforms (Maarten Jansen).- On Sensitivity of Metalearning: An Illustrative Study for Robust Regression (Jan Kalina).- Function-parametric empirical processes, projections and unitary operators (Estбte Khmaladze).- Rank-based Analysis of Multivariate Data in Factorial Designs and Its Implementation in R (Maximilian Kiefel and Arne C. Bathke).- Tests for Independence Involving Spherical Data (Pierre Lafaye de Micheaux, Simos Meintanis and Thomas Verdebout).- Interval-Wise Testing of Functional Data Defined on Two-dimensional Domains(Patrick B. Langthaler, Alessia Pini and Arne C. Bathke).- Assessing Data Support for the Simplifying Assumption in Bivariate Conditional Copulas (Evgeny Levi and Radu V. Craiu).- Semiparametric weighting estimations of a zero-inflated Poisson regression with missing in covariates (Lukusa, M.T. and Phoa, F.K.H.).- The Discrepancy Method for Extremal Index Estimation (Natalia Markovich).- Correction for optimisation bias in structured sparse high-dimensional variable selection (Bastien Marquis and Maarten Jansen).- United Statistical Algorithms and Data Science: An Introd

Nonparametric Statistics - A Step-by-Step Approach  2e

Автор: Corder
Название: Nonparametric Statistics - A Step-by-Step Approach 2e
ISBN: 1118840313 ISBN-13(EAN): 9781118840313
Издательство: Wiley
Рейтинг:
Цена: 13139.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: a very useful resource for courses in nonparametric statistics in which the emphasis is on applications rather than on theory. It also deserves a place in libraries of all institutions where introductory statistics courses are taught.

Nonparametric Estimation under Shape Constraints

Автор: Groeneboom
Название: Nonparametric Estimation under Shape Constraints
ISBN: 0521864011 ISBN-13(EAN): 9780521864015
Издательство: Cambridge Academ
Рейтинг:
Цена: 11880.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book treats the latest developments in the theory of order-restricted inference, with special attention to nonparametric methods and algorithmic aspects. Each chapter ends with a set of exercises of varying difficulty. The theory is illustrated with the analysis of real-life data, which are mostly medical in nature.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия