Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

A Geometric Approach to the Unification of Symbolic Structures and Neural Networks, Dong Tiansi


Варианты приобретения
Цена: 18167.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Dong Tiansi
Название:  A Geometric Approach to the Unification of Symbolic Structures and Neural Networks
ISBN: 9783030562748
Издательство: Springer
Классификация:



ISBN-10: 3030562743
Обложка/Формат: Hardcover
Страницы: 145
Вес: 0.41 кг.
Дата издания: 25.08.2020
Серия: Studies in computational intelligence
Язык: English
Издание: 1st ed. 2021
Иллюстрации: 45 illustrations, color; 103 illustrations, black and white; xxii, 145 p. 148 illus., 45 illus. in color.
Размер: 23.39 x 15.60 x 1.12 cm
Читательская аудитория: Professional & vocational
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book confronts this old issue head on, with a historical look, incorporating recent advances and new perspectives, thus leading to promising new methods and approaches.


Learn Keras for Deep Neural Networks: A Fast-Track Approach to Modern Deep Learning with Python

Автор: Moolayil Jojo
Название: Learn Keras for Deep Neural Networks: A Fast-Track Approach to Modern Deep Learning with Python
ISBN: 1484242394 ISBN-13(EAN): 9781484242391
Издательство: Springer
Рейтинг:
Цена: 6288.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Learn, understand, and implement deep neural networks in a math- and programming-friendly approach using Keras and Python. The book focuses on an end-to-end approach to developing supervised learning algorithms in regression and classification with practical business-centric use-cases implemented in Keras.The overall book comprises three sections with two chapters in each section. The first section prepares you with all the necessary basics to get started in deep learning. Chapter 1 introduces you to the world of deep learning and its difference from machine learning, the choices of frameworks for deep learning, and the Keras ecosystem. You will cover a real-life business problem that can be solved by supervised learning algorithms with deep neural networks. You’ll tackle one use case for regression and another for classification leveraging popular Kaggle datasets. Later, you will see an interesting and challenging part of deep learning: hyperparameter tuning; helping you further improve your models when building robust deep learning applications. Finally, you’ll further hone your skills in deep learning and cover areas of active development and research in deep learning. At the end of Learn Keras for Deep Neural Networks, you will have a thorough understanding of deep learning principles and have practical hands-on experience in developing enterprise-grade deep learning solutions in Keras.What You’ll Learn Master fast-paced practical deep learning concepts with math- and programming-friendly abstractions. Design, develop, train, validate, and deploy deep neural networks using the Keras framework Use best practices for debugging and validating deep learning models Deploy and integrate deep learning as a service into a larger software service or product Extend deep learning principles into other popular frameworks Who This Book Is For Software engineers and data engineers with basic programming skills in any language and who are keen on exploring deep learning for a career move or an enterprise project.

Self-Learning and Adaptive Algorithms for Business Applications: A Guide to Adaptive Neuro-Fuzzy Systems for Fuzzy Clustering Under Uncertainty Conditions

Автор: Zhengbing Hu, Yevgeniy V. Bodyanskiy, Oleksii Tyshchenko
Название: Self-Learning and Adaptive Algorithms for Business Applications: A Guide to Adaptive Neuro-Fuzzy Systems for Fuzzy Clustering Under Uncertainty Conditions
ISBN: 1838671749 ISBN-13(EAN): 9781838671747
Издательство: Emerald
Рейтинг:
Цена: 9349.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In this guide designed for researchers and students of computer science, readers will find a resource for how to apply methods that work on real-life problems to their challenging applications, and a go-to work that makes fuzzy clustering issues and aspects clear.

Evolutionary approach to machine learning and deep neural networks.

Название: Evolutionary approach to machine learning and deep neural networks.
ISBN: 9811301999 ISBN-13(EAN): 9789811301995
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides theoretical and practical knowledge about a methodology for evolutionary algorithm-based search strategy with the integration of several machine learning and deep learning techniques. These include convolutional neural networks, Gr?bner bases, relevance vector machines, transfer learning, bagging and boosting methods, clustering techniques (affinity propagation), and belief networks, among others. The development of such tools contributes to better optimizing methodologies. Beginning with the essentials of evolutionary algorithms and covering interdisciplinary research topics, the contents of this book are valuable for different classes of readers: novice, intermediate, and also expert readers from related fields.Following the chapters on introduction and basic methods, Chapter 3 details a new research direction, i.e., neuro-evolution, an evolutionary method for the generation of deep neural networks, and also describes how evolutionary methods are extended in combination with machine learning techniques. Chapter 4 includes novel methods such as particle swarm optimization based on affinity propagation (PSOAP), and transfer learning for differential evolution (TRADE), another machine learning approach for extending differential evolution.The last chapter is dedicated to the state of the art in gene regulatory network (GRN) research as one of the most interesting and active research fields. The author describes an evolving reaction network, which expands the neuro-evolution methodology to produce a type of genetic network suitable for biochemical systems and has succeeded in designing genetic circuits in synthetic biology. The author also presents real-world GRN application to several artificial intelligent tasks, proposing a framework of motion generation by GRNs (MONGERN), which evolves GRNs to operate a real humanoid robot.

Neural Networks in the Analysis and Design of Structures

Автор: Zenon Waszczysznk
Название: Neural Networks in the Analysis and Design of Structures
ISBN: 3211833226 ISBN-13(EAN): 9783211833223
Издательство: Springer
Рейтинг:
Цена: 12157.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Neural Networks are a new, interdisciplinary tool for information processing. Neurocomputing being successfully introduced to structural problems which are difficult or even impossible to be analysed by standard computers (hard computing).


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия