Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Recommender Systems in Fashion and Retail, Dokoohaki Nima, Jaradat Shatha, Corona Pampнn Humberto Jesъs


Варианты приобретения
Цена: 11179.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Dokoohaki Nima, Jaradat Shatha, Corona Pampнn Humberto Jesъs
Название:  Recommender Systems in Fashion and Retail
ISBN: 9783030661021
Издательство: Springer
Классификация:




ISBN-10: 3030661024
Обложка/Формат: Hardcover
Страницы: 160
Вес: 0.41 кг.
Дата издания: 11.05.2021
Язык: English
Размер: 23.39 x 15.60 x 1.12 cm
Ссылка на Издательство: Link
Поставляется из: Германии
Описание: Chapter 1. The Importance of Brand Affinity in Luxury Fashion Recommendations.- Chapter 2. Probabilistic Color Modelling of Clothing Items.- Chapter 3. User Aesthetics Identification for Fashion Recommendations.- Chapter 4. Towards User-in-the-Loop Online Fashion Size Recommendation with Low Cognitive Load.- Chapter 5. Attention Gets You the Right Size and Fit in Fashion.- Chapter 6. The Ensemble-Building Challenge for Fashion Recommendation.- Chapter 7. Outfit Generation and Recommendation - An Experimental Study.- Chapter 8. Understanding Professional Fashion Stylists Outfit Recommendation Process.


Recommender Systems

Автор: Charu C. Aggarwal
Название: Recommender Systems
ISBN: 3319296574 ISBN-13(EAN): 9783319296579
Издательство: Springer
Рейтинг:
Цена: 9362.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: An Introduction to Recommender Systems.- Neighborhood-Based Collaborative Filtering.- Model-Based Collaborative Filtering.- Content-Based Recommender Systems.- Knowledge-Based Recommender Systems.- Ensemble-Based and Hybrid Recommender Systems.- Evaluating Recommender Systems.- Context-Sensitive Recommender Systems.- Time- and Location-Sensitive Recommender Systems.- Structural Recommendations in Networks.- Social and Trust-Centric Recommender Systems.- Attack-Resistant Recommender Systems.- Advanced Topics in Recommender Systems.

Fashion Recommender Systems

Автор: Dokoohaki Nima
Название: Fashion Recommender Systems
ISBN: 3030552179 ISBN-13(EAN): 9783030552176
Издательство: Springer
Цена: 23757.00 р.
Наличие на складе: Поставка под заказ.

Описание: This book is intended for periodontal residents and practicing periodontists who wish to incorporate the principles of moderate sedation into daily practice. Comprehensive airway management and rescue skills are then documented in detail so that the patient may be properly managed in the event that the sedation progresses beyond the intended level.

Recommender Systems for Medicine and Music

Автор: Ras Zbigniew W., Wieczorkowska Alicja, Tsumoto Shusaku
Название: Recommender Systems for Medicine and Music
ISBN: 3030664481 ISBN-13(EAN): 9783030664480
Издательство: Springer
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Music recommendation systems are becoming more and more popular. Listening to music may improve heart rate, respiratory rate, and blood pressure in people with heart disease. The book presents a variety of approaches useful to create recommendation systems in healthcare, music, and in music therapy.

Matrix and Tensor Factorization Techniques for Recommender Systems

Автор: Panagiotis Symeonidis; Andreas Zioupos
Название: Matrix and Tensor Factorization Techniques for Recommender Systems
ISBN: 3319413562 ISBN-13(EAN): 9783319413563
Издательство: Springer
Рейтинг:
Цена: 7685.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides a detailed theoretical mathematical background of matrix/tensor factorization techniques and a step-by-step analysis of each method on the basis of an integrated toy example that runs throughout all its chapters and helps the reader to understand the key differences among methods.

Recommender Systems for Location-based Social Networks

Автор: Panagiotis Symeonidis; Dimitrios Ntempos; Yannis M
Название: Recommender Systems for Location-based Social Networks
ISBN: 1493902857 ISBN-13(EAN): 9781493902859
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Introduction.- Recommender Systems.- Online Social Networks.- Location-based Social Networks.- Framework.- Algorithms.- Comparison.- Real Geo-social Recommender Systems.- Conclusions.

Recommender Systems: Advanced Developments

Автор: Guang-quan Zhang, Jie Lu, Qian Zhang
Название: Recommender Systems: Advanced Developments
ISBN: 9811224625 ISBN-13(EAN): 9789811224621
Издательство: World Scientific Publishing
Рейтинг:
Цена: 19800.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Recommender systems provide users (businesses or individuals) with personalized online recommendations of products or information, to address the problem of information overload and improve personalized services. Recent successful applications of recommender systems are providing solutions to transform online services for e-government, e-business, e-commerce, e-shopping, e-library, e-learning, e-tourism, and more.This unique compendium not only describes theoretical research but also reports on new application developments, prototypes, and real-world case studies of recommender systems. The comprehensive volume provides readers with a timely snapshot of how new recommendation methods and algorithms can overcome challenging issues. Furthermore, the monograph systematically presents three dimensions of recommender systems — basic recommender system concepts, advanced recommender system methods, and real-world recommender system applications.By providing state-of-the-art knowledge, this excellent reference text will immensely benefit researchers, managers, and professionals in business, government, and education to understand the concepts, methods, algorithms and application developments in recommender systems.

Recommender system with machine learning and artificial intelligence :

Автор: Sachi Nandan Mohanty; Jyotir Moy Chatterjee
Название: Recommender system with machine learning and artificial intelligence :
ISBN: 1119711576 ISBN-13(EAN): 9781119711575
Издательство: Wiley
Рейтинг:
Цена: 28979.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is a multi-disciplinary effort that involves world-wide experts from diverse fields, such as artificial intelligence, human computer interaction, information technology, data mining, statistics, adaptive user interfaces, decision support systems, marketing, and consumer behavior. It comprehensively covers the topic of recommender systems, which provide personalized recommendations of items or services to the new users based on their past behavior. Recommender system methods have been adapted to diverse applications including social networking, movie recommendation, query log mining, news recommendations, and computational advertising.

This book synthesizes both fundamental and advanced topics of a research area that has now reached maturity. Recommendations in agricultural or healthcare domains and contexts, the context of a recommendation can be viewed as important side information that affects the recommendation goals. Different types of context such as temporal data, spatial data, social data, tagging data, and trustworthiness are explored.

This book illustrates how this technology can support the user in decision-making, planning and purchasing processes in agricultural & healthcare sectors.

Artificial Intelligence: What You Need to Know About Machine Learning, Robotics, Deep Learning, Recommender Systems, Internet of Things, Neural

Автор: Wilkins Neil
Название: Artificial Intelligence: What You Need to Know About Machine Learning, Robotics, Deep Learning, Recommender Systems, Internet of Things, Neural
ISBN: 1647481694 ISBN-13(EAN): 9781647481698
Издательство: Неизвестно
Рейтинг:
Цена: 4137.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Are you confused about what all the rage behind artificial intelligence is and would like to learn more?

This book covers everything from machine learning to robotics and the internet of things.

You can use it as a nifty guidebook whenever you come across news headlines that talk about some new advancement in AI by Google or Facebook.

By the time you finish reading, you will be aware of what artificial neural networks are, how gradient descent and back propagation work, and what deep learning is.

You will also learn a comprehensive history of AI, from the first invention of automations in antiquity to the driver-less cars of today.

Here's just a tiny fraction of what you'll discover:

  • Understand how machines can "think" and how they learn
  • Learn the five reasons why experts are warning us about AI research
  • Find the answers to the top six myths of artificial intelligence
  • Learn what neural networks are and how they work, the "brains" of machine learning
  • Understand reinforcement learning and how it is used to teach machine learning systems through experience
  • Become up-to-date with the current state-of-the-art artificial intelligence methods that use deep learning
  • Learn the basics of recommender systems
  • Expand your current view of machines and what is possible with modern robotics
  • Enter the vast world of the internet of things technologies
  • Find out why AI is the new business degree
  • And much, much more

If you want to learn more about artificial intelligence, then scroll up and click "add to cart"

Recommender Systems Handbook

Автор: Francesco Ricci; Lior Rokach; Bracha Shapira
Название: Recommender Systems Handbook
ISBN: 1489977805 ISBN-13(EAN): 9781489977809
Издательство: Springer
Рейтинг:
Цена: 25853.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Recommender Systems: Introduction and Challenges.- A Comprehensive Survey of Neighborhood-based Recommendation Methods.- Advances in Collaborative Filtering.- Semantics-aware Content-based Recommender Systems.- Constraint-based Recommender Systems.- Context-Aware Recommender Systems.- Data Mining Methods for Recommender Systems.- Evaluating Recommender Systems.- Evaluating Recommender Systems with User Experiments.- Explaining Recommendations: Design and Evaluation.- Recommender Systems in Industry: A Netflix Case Study.- Panorama of Recommender Systems to Support Learning.- Music Recommender Systems.- The Anatomy of Mobile Location-Based Recommender Systems.- Social Recommender Systems.- People-to-People Reciprocal Recommenders.- Collaboration, Reputation and Recommender Systems in Social Web Search.- Human Decision Making and Recommender Systems.- Privacy Aspects of Recommender Systems.- Source Factors in Recommender System Credibility Evaluation.- Personality and Recommender Systems.- Group Recommender Systems: Aggregation, Satisfaction and Group Attributes.- Aggregation Functions for Recommender Systems.- Active Learning in Recommender Systems.- Multi-Criteria Recommender Systems.- Novelty and Diversity in Recommender Systems.- Cross-domain Recommender Systems.- Robust Collaborative Recommendation.

Recommender Systems for the Social Web

Автор: Jos? J. Pazos Arias; Ana Fern?ndez Vilas; Rebeca P
Название: Recommender Systems for the Social Web
ISBN: 3642446272 ISBN-13(EAN): 9783642446276
Издательство: Springer
Рейтинг:
Цена: 16977.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book introduces opportunities and challenges that arise in the recommenders` area with the advent of Web 2.0. It presents the mains aspects in the Web 2.0 hype which have to be incorporated in traditional recommender systems.

Recommender Systems and the Social Web

Автор: Fatih Gedikli
Название: Recommender Systems and the Social Web
ISBN: 3658019476 ISBN-13(EAN): 9783658019471
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: ГЇВїВЅ There is an increasing demand for recommender systems due to the information overload users are facing on the Web. A tag recommender algorithm is proposed which recommends tags for users to annotate their favorite online resources.

Social Network-Based Recommender Systems

Автор: Daniel Schall
Название: Social Network-Based Recommender Systems
ISBN: 3319227343 ISBN-13(EAN): 9783319227344
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Social Network-Based Recommender Systems is designed as a reference for professionals and researchers working in social network analysis and companies working on recommender systems.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия