Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Causal Inference in Econometrics, Huynh Van-Nam, Kreinovich Vladik, Sriboonchitta Songsak


Варианты приобретения
Цена: 27950.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Huynh Van-Nam, Kreinovich Vladik, Sriboonchitta Songsak
Название:  Causal Inference in Econometrics
ISBN: 9783319801087
Издательство: Springer
Классификация:



ISBN-10: 3319801082
Обложка/Формат: Paperback
Страницы: 638
Вес: 0.90 кг.
Дата издания: 30.03.2018
Серия: Studies in computational intelligence
Язык: English
Издание: Softcover reprint of
Иллюстрации: 91 illustrations, color; 15 illustrations, black and white; xi, 638 p. 106 illus., 91 illus. in color.
Размер: 23.39 x 15.60 x 3.33 cm
Читательская аудитория: General (us: trade)
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This bookis devoted to the analysis of causal inference which is one of the most difficult tasks in dataanalysis: when two phenomena are observed to be related, it is often difficultto decide whether one of them causally influences the other one, or whetherthese two phenomena have a common cause.


Explanation in Causal Inference

Автор: VanderWeele Tyler
Название: Explanation in Causal Inference
ISBN: 0199325871 ISBN-13(EAN): 9780199325870
Издательство: Oxford Academ
Рейтинг:
Цена: 18216.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The book provides an accessible but comprehensive overview of methods for mediation and interaction. There has been considerable and rapid methodological development on mediation and moderation/interaction analysis within the causal-inference literature over the last ten years. Much of this
material appears in a variety of specialized journals, and some of the papers are quite technical. There has also been considerable interest in these developments from empirical researchers in the social and biomedical sciences. However, much of the material is not currently in a format that is
accessible to them. The book closes these gaps by providing an accessible, comprehensive, book-length coverage of mediation.

The book begins with a comprehensive introduction to mediation analysis, including chapters on concepts for mediation, regression-based methods, sensitivity analysis, time-to-event outcomes, methods for multiple mediators, methods for time-varying mediation and longitudinal data, and relations
between mediation and other concepts involving intermediates such as surrogates, principal stratification, instrumental variables, and Mendelian randomization. The second part of the book concerns interaction or "moderation," including concepts for interaction, statistical interaction, confounding
and interaction, mechanistic interaction, bias analysis for interaction, interaction in genetic studies, and power and sample-size calculation for interaction. The final part of the book provides comprehensive discussion about the relationships between mediation and interaction and unites these
concepts within a single framework. This final part also provides an introduction to spillover effects or social interaction, concluding with a discussion of social-network analyses.

The book is written to be accessible to anyone with a basic knowledge of statistics. Comprehensive appendices provide more technical details for the interested reader. Applied empirical examples from a variety of fields are given throughout. Software implementation in SAS, Stata, SPSS, and R is
provided. The book should be accessible to students and researchers who have completed a first-year graduate sequence in quantitative methods in one of the social- or biomedical-sciences disciplines. The book will only presuppose familiarity with linear and logistic regression, and could potentially
be used as an advanced undergraduate book as well.

Causal Analysis in Biomedicine and Epidemiology

Автор: Aickin
Название: Causal Analysis in Biomedicine and Epidemiology
ISBN: 0824707486 ISBN-13(EAN): 9780824707484
Издательство: Taylor&Francis
Рейтинг:
Цена: 33686.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: "Provides current models, tools, and examples for the formulation and evaluation of scientific hypotheses in causal terms. Introduces a new method of model parametritization. Illustrates structural equations and graphical elements for complex causal systems."

Causality, probability, and time

Автор: Kleinberg, Samantha (stevens Institute Of Technology, New Jersey)
Название: Causality, probability, and time
ISBN: 1107686016 ISBN-13(EAN): 9781107686014
Издательство: Cambridge Academ
Рейтинг:
Цена: 6019.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents a new approach to causal inference (finding relationships from a set of data) and explanation (assessing why a particular event occurred), addressing both the timing and complexity of relationships. The practical use of the method developed is illustrated through theoretical and experimental case studies, demonstrating its feasibility and success.

Capturing Connectivity and Causality in Complex Industrial Processes

Автор: Fan Yang; Ping Duan; Sirish L. Shah; Tongwen Chen
Название: Capturing Connectivity and Causality in Complex Industrial Processes
ISBN: 3319053795 ISBN-13(EAN): 9783319053790
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Introduction.- Examples of Applications for Connectivity and Causality Analysis.- Description of Connectivity and Causality.- Capturing Connectivity and Causality from Process Knowledge.- Capturing Causality from Process Data.- Case Studies.

Micro-Econometrics for Policy, Program and Treatment Effects

Автор: Lee, Myoung-jae
Название: Micro-Econometrics for Policy, Program and Treatment Effects
ISBN: 0199267693 ISBN-13(EAN): 9780199267699
Издательство: Oxford Academ
Рейтинг:
Цена: 7681.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This is one of the first books to provide a textbook exposition of the literature on how to measure accurately the `effects` of a `treatment`, such as a drug, educational programme, or tax regime, on a response variable like an illness, GPA, or income. The book focuses on non-experimental, microeconometric estimation.

Introduction to Applied Linear Algebra

Автор: Boyd Stephen
Название: Introduction to Applied Linear Algebra
ISBN: 1316518965 ISBN-13(EAN): 9781316518960
Издательство: Cambridge Academ
Рейтинг:
Цена: 6811.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A groundbreaking introductory textbook covering the linear algebra methods needed for data science and engineering applications. It combines straightforward explanations with numerous practical examples and exercises from data science, machine learning and artificial intelligence, signal and image processing, navigation, control, and finance.

Matrix Analysis

Автор: Horn
Название: Matrix Analysis
ISBN: 0521548233 ISBN-13(EAN): 9780521548236
Издательство: Cambridge Academ
Рейтинг:
Цена: 9029.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The thoroughly revised and updated second edition of this acclaimed text for a second course on linear algebra has more than 1,100 problems and exercises, along with new sections on the singular value and CS decompositions and the Weyr canonical form, expanded treatments of inverse problems and of block matrices and much more.

Real-World Reasoning: Toward Scalable, Uncertain Spatiotemporal,  Contextual and Causal Inference

Автор: Ben Goertzel; Nil Geisweiller; Lucio Coelho; Predr
Название: Real-World Reasoning: Toward Scalable, Uncertain Spatiotemporal, Contextual and Causal Inference
ISBN: 9462390533 ISBN-13(EAN): 9789462390539
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The general problem addressed in this book is a large and important one: how to usefully deal with huge storehouses of complex information about real-world situations.

Semiparametric Structural Equation Models for Causal Discovery

Автор: Shohei Shimizu
Название: Semiparametric Structural Equation Models for Causal Discovery
ISBN: 4431557830 ISBN-13(EAN): 9784431557838
Издательство: Springer
Рейтинг:
Цена: 5589.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This is the first book to provide a comprehensive introduction to a new modeling framework known as semiparametric structural equation modeling and its technique, with the fundamental background needed to understand it.

Causal Models and Intelligent Data Management

Автор: Alex Gammerman
Название: Causal Models and Intelligent Data Management
ISBN: 3642636829 ISBN-13(EAN): 9783642636820
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The need to electronically store, manipulate and analyze large-scale, high-dimensional data sets requires new computational methods. This book presents new intelligent data management methods and tools, including new results from the field of inference.

Computer Age Statistical Inference

Автор: Bradley Efron and Trevor Hastie
Название: Computer Age Statistical Inference
ISBN: 1107149894 ISBN-13(EAN): 9781107149892
Издательство: Cambridge Academ
Рейтинг:
Цена: 9029.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.

Causality, Correlation and Artificial Intelligence for Rational Decision Making

Автор: Marwala Tshilidzi
Название: Causality, Correlation and Artificial Intelligence for Rational Decision Making
ISBN: 9814630861 ISBN-13(EAN): 9789814630863
Издательство: World Scientific Publishing
Рейтинг:
Цена: 13939.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Causality has been a subject of study for a long time. Often causality is confused with correlation. Human intuition has evolved such that it has learned to identify causality through correlation. In this book, four main themes are considered and these are causality, correlation, artificial intelligence and decision making. A correlation machine is defined and built using multi-layer perceptron network, principal component analysis, Gaussian Mixture models, genetic algorithms, expectation maximization technique, simulated annealing and particle swarm optimization. Furthermore, a causal machine is defined and built using multi-layer perceptron, radial basis function, Bayesian statistics and Hybrid Monte Carlo methods. Both these machines are used to build a Granger non-linear causality model. In addition, the Neyman-Rubin, Pearl and Granger causal models are studied and are unified. The automatic relevance determination is also applied to extend Granger causality framework to the non-linear domain. The concept of rational decision making is studied, and the theory of flexibly-bounded rationality is used to extend the theory of bounded rationality within the principle of the indivisibility of rationality. The theory of the marginalization of irrationality for decision making is also introduced to deal with satisficing within irrational conditions. The methods proposed are applied in biomedical engineering, condition monitoring and for modelling interstate conflict.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия