Описание: With this book, you`ll learn how to train, evaluate and deploy Tensorflow and Keras models as real-world web applications. After a hands-on introduction, you`ll use a sample model to explore the details of deep learning, selecting the right layers that can solve a given problem. By the end of the book, you`ll build a Bitcoin application that ...
Chapter Goal: Introduce TensorFlow 2 and discuss preliminary material on conventions and practices specific to TensorFlow.
- Differences between TensorFlow iterations
- TensorFlow for economics and finance
- Introduction to tensors
- Review of linear algebra and calculus
- Loading data for use in TensorFlow
- Defining constants and variables
Chapter 2: Machine Learning and Economics
Chapter Goal: Provide a high-level overview of machine learning models and explain how they can be employed in economics and finance. Part of the chapter will review existing work in economics and speculate on future use-cases.
- Introduction to machine learning
- Machine learning for economics and finance
- Unsupervised machine learning
- Supervised machine learning
- Regularization
- Prediction
- Evaluation
Chapter 3: Regression
Chapter Goal: Explain how regression models are used primarily for prediction purposes in machine learning, rather than hypothesis testing, as is the case in economics. Introduce evaluation metrics and optimization routines used to solve regression models.
- Linear regression
- Partially-linear regression
- Non-linear regression
- Logistic regression
- Loss functions
- Evaluation metrics
- Optimizers
Chapter 4: Trees
Chapter Goal: Introduce tree-based models and the concept of ensembles.
- Decision trees
- Regression trees
- Random forests
- Model tuning
Chapter 5: Gradient Boosting
Chapter Goal: Introduce gradient boosting and discuss how it is applied, how models are tuned, and how to identify important features.
- Introduction to gradient boosting
- Boosting with regression models
- Boosting with trees
- Model tuning
- Feature importance
Chapter 6: Images
Chapter Goal: Introduce the high level Keras and Estimators APIs. Explain how these libraries can be used to perform image classification using a variety of deep learning models. Also, discuss the use of pretrained models and fine-tuning. Speculate on image classification uses in economics and finance.
Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data.
The updated edition of this practical book uses concrete examples, minimal theory, and three production-ready Python frameworks--scikit-learn, Keras, and TensorFlow--to help you gain an intuitive understanding of the concepts and tools for building intelligent systems. You'll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you've learned, all you need is programming experience to get started.
Neural networks are getting smaller. Much smaller. The OK Google team, for example, has run machine learning models that are just 14 kilobytes in size--small enough to work on the digital signal processor in an Android phone. With this practical book, you'll learn about TensorFlow Lite for Microcontrollers, a miniscule machine learning library that allows you to run machine learning algorithms on tiny hardware.
Authors Pete Warden and Daniel Situnayake explain how you can train models that are small enough to fit into any environment, including small embedded devices that can run for a year or more on a single coin cell battery. Ideal for software and hardware developers who want to build embedded devices using machine learning, this guide shows you how to create a TinyML project step-by-step. No machine learning or microcontroller experience is necessary.
Learn practical machine learning applications on embedded devices, including simple uses such as speech recognition and gesture detection
Train models such as speech, accelerometer, and image recognition, you can deploy on Arduino and other embedded platforms
Understand how to work with Arduino and ultralow-power microcontrollers
Use techniques for optimizing latency, energy usage, and model and binary size
Автор: Laborde Gant Название: Learning Tensorflow.Js: Machine Learning in JavaScript ISBN: 1492090794 ISBN-13(EAN): 9781492090793 Издательство: Wiley Рейтинг: Цена: 7126.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: In this guide, author Gant Laborde--Google Developer Expert in machine learning and the web--provides a hands-on end-to-end approach to TensorFlow.js fundamentals for a broad technical audience that includes data scientists, engineers, web developers, students, and researchers.
Build machine learning web applications without having to learn a new language. This book will help you develop basic knowledge of machine learning concepts and applications.
You'll learn not only theory, but also dive into code samples and example projects with TensorFlow.js. Using these skills and your knowledge as a web developer, you'll add a whole new field of development to your tool set. This will give you a more concrete understanding of the possibilities offered by machine learning. Discover how ML will impact the future of not just programming in general, but web development specifically.
Machine learning is currently one of the most exciting technology fields with the potential to impact industries from health to home automation to retail, and even art. Google has now introduced TensorFlow.js--an iteration of TensorFlow aimed directly at web developers. Practical Machine Learning in JavaScript will help you stay relevant in the tech industry with new tools, trends, and best practices.
What You'll Learn
Use the JavaScript framework for ML
Build machine learning applications for the web
Develop dynamic and intelligent web content
Who This Book Is For
Web developers and who want a hands-on introduction to machine learning in JavaScript. A working knowledge of the JavaScript language is recommended.
Автор: Balakrishnan Kaushik Название: TensorFlow Reinforcement Learning Quick Start Guide ISBN: 1789533589 ISBN-13(EAN): 9781789533583 Издательство: Неизвестно Рейтинг: Цена: 4964.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book is an essential guide for anyone interested in Reinforcement Learning. The book provides an actionable reference for Reinforcement Learning algorithms and their applications using TensorFlow and Python. It will help readers leverage the power of algorithms such as Deep Q-Network (DQN), Deep Deterministic Policy Gradients (DDPG), and ...
Автор: Holdroyd Tony Название: TensorFlow 2.0 Quick Start Guide ISBN: 178953075X ISBN-13(EAN): 9781789530759 Издательство: Неизвестно Рейтинг: Цена: 6068.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: TensorFlow is one of the most popular machine learning frameworks in Python. With this book, you will improve your knowledge of some of the latest TensorFlow features and will be able to perform supervised and unsupervised machine learning and also train neural networks.
Описание: This book offers a single source that provides comprehensive coverage of the capabilities of TensorFlow 2 through the use of realistic, scenario-based projects. After learning what`s new in TensorFlow 2, you`ll dive right into developing machine learning models through applicable projects.
DO YOU WANT TO LEARN THE BASICS OF PYTHON PROGRAMMING QUICKLY?
Imagine a world where you can make a computer program learn for itself? What if it could recognize who is in a picture or the exact websites that you want to look for when you type it into the program? What if you were able to create any kind of program that you wanted, even as a beginner programmer, without all of the convoluted codes and other information that makes your head spin?
This is actually all possible. The programs that were mentioned before are all a part of machine learning. This is a breakthrough in the world of information technology, which allows the computer to learn how to behave, rather than asking the programmer to think of every single instance that may show up with their user ahead of time. it is taking over the world, and you may be using it now, without even realizing it.
Some of the topics that we will discuss include:
The Fundamentals of Machine Learning, Deep learning, And Neural Networks
How To Set Up Your Environment And Make Sure That Python, TensorFlow And Scikit-Learn Work Well For You
How To Master Neural Network Implementation Using Different Libraries
How Random Forest Algorithms Are Able To Help Out With Machine Learning
How To Uncover Hidden Patterns And Structures With Clustering
How Recurrent Neural Networks Work And When To Use
The Importance Of Linear Classifiers And Why They Need To Be Used In Machine Learning
And Much More
This guidebook is going to provide you with the information you need to get started with Python Machine Learning. If you have an idea for a great program, but you don't have the technical knowledge to make it happen, then this guidebook will help you get started. Machine learning has the capabilities, and Python has the ease, to help you, even as a beginner, create any product that you would like.
If you have a program in mind, or you just want to be able to get some programming knowledge and learn more about the power that comes behind it, then this is the guidebook for you.
Описание: You will learn the principles of computer vision and deep learning, and understand various models and architectures with their pros and cons. You will learn how to use TensorFlow 2.x to build your own neural network model and apply it to various computer vision tasks such as image acquiring, processing, and analyzing.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru