Описание: Due to the growing use of web applications and communication devices, the use of data has increased throughout various industries. It is necessary to develop new techniques for managing data in order to ensure adequate usage. Deep learning, a subset of artificial intelligence and machine learning, has been recognized in various real-world applications such as computer vision, image processing, and pattern recognition. The deep learning approach has opened new opportunities that can make such real-life applications and tasks easier and more efficient. Deep Learning and Neural Networks: Concepts, Methodologies, Tools, and Applications is a vital reference source that trends in data analytics and potential technologies that will facilitate insight in various domains of science, industry, business, and consumer applications. It also explores the latest concepts, algorithms, and techniques of deep learning and data mining and analysis. Highlighting a range of topics such as natural language processing, predictive analytics, and deep neural networks, this multi-volume book is ideally designed for computer engineers, software developers, IT professionals, academicians, researchers, and upper-level students seeking current research on the latest trends in the field of deep learning.
Автор: Rik Das, Siddhartha Bhattacharyya, Sudarshan Nandy Название: Machine Learning Applications: Emerging Trends ISBN: 3110608537 ISBN-13(EAN): 9783110608533 Издательство: Walter de Gruyter Цена: 18586.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
The publication is attempted to address emerging trends in machine learning applications. Recent trends in information identification have identified huge scope in applying machine learning techniques for gaining meaningful insights. Random growth of unstructured data poses new research challenges to handle this huge source of information. Efficient designing of machine learning techniques is the need of the hour. Recent literature in machine learning has emphasized on single technique of information identification. Huge scope exists in developing hybrid machine learning models with reduced computational complexity for enhanced accuracy of information identification. This book will focus on techniques to reduce feature dimension for designing light weight techniques for real time identification and decision fusion. Key Findings of the book will be the use of machine learning in daily lives and the applications of it to improve livelihood. However, it will not be able to cover the entire domain in machine learning in its limited scope. This book is going to benefit the research scholars, entrepreneurs and interdisciplinary approaches to find new ways of applications in machine learning and thus will have novel research contributions. The lightweight techniques can be well used in real time which will add value to practice.
Описание: This monograph provides a comprehensive overview of methods for searching, evaluating, and optimizing highway location and alignments using genetic algorithms (GAs), a powerful Artificial Intelligence (AI) technique. It presents a two-level programming structure to deal with the effects of varying highway location on traffic level changes in surrounding road networks within the highway location search and alignment optimization process. In addition, the proposed method evaluates environmental impacts as well as all relevant highway costs associated with its construction, operation, and maintenance. The monograph first covers various search methods, relevant cost functions, constraints, computational efficiency, and solution quality issues arising from optimizing the highway alignment optimization (HAO) problem. It then focuses on applications of a special-purpose GA in the HAO problem where numerous highway alignments are generated and evaluated, and finally the best ones are selected based on costs, traffic impacts, safety, energy, and environmental considerations. A review of other promising optimization methods for the HAO problem is also provided in this monograph.
Описание: THE SERIES: INTELLIGENT BIOMEDICAL DATA ANALYSIS By focusing on the methods and tools for intelligent data analysis, this series aims to narrow the increasing gap between data gathering and data comprehension. Emphasis is also given to the problems resulting from automated data collection in modern hospitals, such as analysis of computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring. In medicine, overcoming this gap is crucial since medical decision making needs to be supported by arguments based on existing medical knowledge as well as information, regularities and trends extracted from big data sets.
Описание: Addresses the complex realm of machine learning and its applications for solving various real-world problems in a variety of disciplines, such as manufacturing, business, information retrieval, and security. This premier reference source is essential for professors, researchers, and students in artificial intelligence as well as computer science and engineering.
Автор: Das, S.K., Das, S.P., Dey, N., Hassanien, A.-E. Название: Machine Learning Algorithms for Industrial Applications ISBN: 3030506401 ISBN-13(EAN): 9783030506407 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book explores several problems and their solutions regarding data analysis and prediction for industrial applications. Machine learning is a prominent topic in modern industries: its influence can be felt in many aspects of everyday life, as the world rapidly embraces big data and data analytics.
Автор: Saifullah Khalid Название: Applications of Artificial Intelligence in Electrical Engineering ISBN: 1799827186 ISBN-13(EAN): 9781799827184 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 42451.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Artificial intelligence is increasingly finding its way into industrial and manufacturing contexts. The prevalence of AI in industry from stock market trading to manufacturing makes it easy to forget how complex artificial intelligence has become. Engineering provides various current and prospective applications of these new and complex artificial intelligence technologies.
Applications of Artificial Intelligence in Electrical Engineering is a critical research book that examines the advancing developments in artificial intelligence with a focus on theory and research and their implications. Highlighting a wide range of topics such as evolutionary computing, image processing, and swarm intelligence, this book is essential for engineers, manufacturers, technology developers, IT specialists, managers, academicians, researchers, computer scientists, and students.
Автор: Siddhartha Bhattacharyya, Vaclav Snasel, Aboul Ella Hassanien, Satadal Saha, B. K. Tripathy Название: Deep Learning: Research and Applications ISBN: 3110670798 ISBN-13(EAN): 9783110670790 Издательство: Walter de Gruyter Цена: 20446.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book will focus on the fundamentals of deep learning along with reporting on the current state-of-art research on deep learning. In addition, it would provide an insight of deep neural networks in action with illustrative coding examples. Moreover, the book will also provide video demonstrations on each chapter. Deep learning is a new area of machine learning research, which has been introduced with the objective of moving ML closer to one of its original goals, i.e. artificial intelligence. Deep learning was developed as an ML approach to deal with complex input-output mappings. While traditional methods successfully solve problems where final value is a simple function of input data, deep learning techniques are able to capture composite relations between non immediately related fields, for example between air pressure recordings and english words, millions of pixels and textual description, brand-related news and future stock prices and almost all real world problems. Deep learning is a class of nature inspired machine learning algorithms that uses a cascade of multiple layers of nonlinear processing units for feature extraction and transformation. Each successive layer uses the output from the previous layer as input. The learning may be supervised (e.g., classification) and/or unsupervised (e.g., pattern analysis) manners. These algorithms learn multiple levels of representations that correspond to different levels of abstraction by resorting to some form of gradient descent for training via backpropagation. Layers that have been used in deep learning include hidden layers of an artificial neural network and sets of propositional formulas. They may also include latent variables organized layer-wise in deep generative models such as the nodes in deep belief networks and deep boltzmann machines. Deep learning is part of state-of-the-art systems in various disciplines, particularly computer vision, automatic speech recognition (ASR) and human action recognition. The unique features of this book include: • tutorials on deep learning framework with focus on tensor flow, keras etc. • video demonstration of each chapter for enabling the readers to have a good understanding of the chapter contents. • a score of worked out examples on real life applications. • illustrative diagrams • coding examples
Описание: This book contains high-quality peer-reviewed papers of the International Conference on Big Data, Machine Learning and their Applications (ICBMA 2019) held at Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India, during 29-31 May 2020.
Описание: As technology continues to become more sophisticated, a computer's ability to understand, interpret, and manipulate natural language is also accelerating. Persistent research in the field of natural language processing enables an understanding of the world around us, in addition to opportunities for manmade computing to mirror natural language processes that have existed for centuries.
Natural Language Processing: Concepts, Methodologies, Tools, and Applications is a vital reference source on the latest concepts, processes, and techniques for communication between computers and humans. Highlighting a range of topics such as machine learning, computational linguistics, and semantic analysis, this multi-volume book is ideally designed for computer engineers, computer and software developers, IT professionals, academicians, researchers, and upper-level students seeking current research on the latest trends in the field of natural language processing.
Описание: Brain Storm Optimization (BSO) algorithms are a new kind of swarm intelligence method, which is based on the collective behavior of human beings, i.e., on the brainstorming process.
Автор: Mirjalili Seyedali, Faris Hossam, Aljarah Ibrahim Название: Evolutionary Machine Learning Techniques: Algorithms and Applications ISBN: 9813299924 ISBN-13(EAN): 9789813299924 Издательство: Springer Цена: 25155.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book mainly analyzes the major issues at all phases of the transition of urban-rural relation, as well as measures adopted by the transition launcher in face of such issues, including not only the system and policy design of the national and local government, but the countermeasures of basic-level units at urban and rural areas and the people.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru