Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Practical Machine Learning for Streaming Data with Python: Design, Develop, and Validate Online Learning Models, Putatunda Sayan


Варианты приобретения
Цена: 8384.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Putatunda Sayan
Название:  Practical Machine Learning for Streaming Data with Python: Design, Develop, and Validate Online Learning Models
ISBN: 9781484268667
Издательство: Springer
Классификация:
ISBN-10: 1484268660
Обложка/Формат: Paperback
Страницы: 118
Вес: 0.20 кг.
Дата издания: 23.04.2021
Язык: English
Размер: 23.50 x 15.49 x 0.74 cm
Ссылка на Издательство: Link
Поставляется из: Германии
Описание: Chapter 1: An Introduction to Streaming DataChapter Goal: Introduce the readers to the concept of streaming data, the various challenges associated with it, some of its real-world business applications, various windowing techniques along with the concepts of incremental and online learning algorithms. This chapter will also help in understanding the concept of model evaluation in case of streaming data and provide and introduction to the Scikit-Multiflow framework in Python.No of pages- 35Sub -Topics1. Streaming data2. Challenges of streaming data3. Concept drift4. Applications of streaming data5. Windowing techniques6. Incremental learning and online learning7. Illustration: Adopting batch learners into incremental learners8. Introduction to Scikit-Multiflow framework9. Evaluation of streaming algorithms

Chapter 2: Change DetectionChapter Goal: Help the readers to understand the various change detection/concept drift detection algorithms and its implementation on various datasets using Scikit-Multiflow.No of pages: 35Sub - Topics: 1. Change detection problem2. Concept drift detection algorithms3. ADWIN4. DDM5. EDDM6. Page Hinkley
Chapter 3: Supervised and Unsupervised Learning for Streaming DataChapter Goal: Help the readers to understand the various regression and classification (including Ensemble Learning) algorithms for streaming data and its implementation on various datasets using Scikit-Multiflow. Also, discuss some approaches for clustering with streaming data and its implementation using Python.No of pages: 35Sub - Topics: 1. Regression with streaming data2. Classification with streaming data3. Ensemble Learning with streaming data4. Clustering with streaming data
Chapter 4: Other Tools and the Path ForwardChapter Goal: Introduce the readers to the other open source tools for handling streaming data such as Spark streaming, MOA and more. Also, educate the reader about additional reading for advanced topics within streaming data analysis.No of pages: 35Sub - Topics: 1. Other tools for handling streaming data1.1.1. Apache Spark1.1.2. Massive Online Analysis (MOA)1.1.3. Apache Kafka2. Active research areas and breakthroughs in streaming data analysis3. Conclusion



Machine Learning Automation with TPOT: Build, validate, and deploy fully automated machine learning models with Python

Автор: Radečic Dario
Название: Machine Learning Automation with TPOT: Build, validate, and deploy fully automated machine learning models with Python
ISBN: 180056788X ISBN-13(EAN): 9781800567887
Издательство: Неизвестно
Рейтинг:
Цена: 8091.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: If you are a developer looking to build machine learning models without spending months and years learning machine learning prerequisites, look no further than AutoML. This practical and concise guide will show you how to build automated models for regression and classification, both with traditional algorithms and neural networks.

Beginning Apache Spark 3: With Dataframe, Spark Sql, Structured Streaming, and Spark Machine Learning Library

Автор: Luu Hien
Название: Beginning Apache Spark 3: With Dataframe, Spark Sql, Structured Streaming, and Spark Machine Learning Library
ISBN: 1484273826 ISBN-13(EAN): 9781484273821
Издательство: Springer
Рейтинг:
Цена: 9083.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Chapter 1: Introduction to Apache Spark
Chapter Goal: Provide an overview of Apache SparkNo of pages 15Sub -Topics1. Overview & history2. Spark concepts & architecture3. Spark Unified Stack4. Apache Spark applications
Chapter 2: Working with Apache SparkChapter Goal: Provide details about different ways of interacting with Apache SparkNo of pages: 35Sub - Topics 1. Downloading and Installing Apache Spark2. Exploring Apache Spark using Spark shells3. Exploring Apache Spark using Databricks4. Exploring Apache Spark source code
Chapter 3: Spark SQL - FoundationChapter Goal: Provide an overview to Spark SQL componentNo of pages: 60Sub - Topics 1. Overview & architecture2. Introduction to DataFrames Structured APIs3. Reading & writing data with Spark SQL data sources4. Introduction to datasets
Chapter 4: Spark SQL - AdvanceChapter Goal: Go over the advanced features in Spark SQLNo of pages: 50Sub - Topics: 1. Working with aggregations2. Joining data 3. Working with analytics functions4. Explore Spark SQL catalyst optimizer
Chapter 5: Optimizing Apache Spark ApplicationsChapter Goal: Go over tips and techniques for dealing with performance issues No of pages: 30Sub - Topics: 1. Common performance issues2. Speed up performance by leveraging in-memory computation3. Understand the different support joins in Spark4. Leverage Spark UI to diagnose performance issue
Chapter 6: Structured Streaming - FoundationChapter Goal: Overview of Structured Streaming processing engineNo of pages: 50Sub - Topics: 1. General streaming processing concepts2. Structured Streaming programming model3. Working with streaming data sources and sinks4. Understanding output modes and triggers
Chapter 7: Structured Streaming - AdvancedChapter Goal: Cover complex issues in streaming processingNo of pages: 40Sub - Topics: 1. Streaming processing with event time2. Stateful streaming processing3. Handling duplicate data4. Monitoring streaming processing applications
Chapter 8: Machine Learning with Apache SparkChapter Goal: How to developing Machine Learning applications using Spark MLlibNo of pages: 60Sub - Topics: 1. Machine learning overview2. Taking a tour of supported machine learning algorithms3. Building machine learning pipelines4. Machine learning tasks in action5. Parameters tuning
Chapter 9: Machine Learning Application Development w/ MLflowChapter Goal: Using MLflow to manage the Machine Learning development lifecycle No of pages: 25Sub - Topics: 1. Overview of MLflow2. Tracking machine learning development experiments3. Managing & deploying machine learning models4. Leveraging Spark for batch modeling predictions

Machine Learning Engineering with Python: Manage the production life cycle of machine learning models using MLOps with practical examples

Автор: McMahon Andrew P.
Название: Machine Learning Engineering with Python: Manage the production life cycle of machine learning models using MLOps with practical examples
ISBN: 1801079250 ISBN-13(EAN): 9781801079259
Издательство: Неизвестно
Рейтинг:
Цена: 10114.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Machine learning engineering is an in-demand skill set, and it can be difficult to find a helpful guide on the topic. This book will help you solve business problems by addressing the pain points in creating standardized pipelines for taking proof-of-concept ML models to production and producing trustworthy results.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия