Statistical Modeling for Degradation Data, Ding-Geng (Din) Chen; Yuhlong Lio; Hon Keung Tony
Автор: Trevor Hastie; Robert Tibshirani; Jerome Friedman Название: The Elements of Statistical Learning ISBN: 0387848576 ISBN-13(EAN): 9780387848570 Издательство: Springer Рейтинг: Цена: 10480.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This major new edition features many topics not covered in the original, including graphical models, random forests, and ensemble methods. As before, it covers the conceptual framework for statistical data in our rapidly expanding computerized world.
Автор: H. Bozdogan; Arjun K. Gupta Название: Multivariate Statistical Modeling and Data Analysis ISBN: 9401082642 ISBN-13(EAN): 9789401082648 Издательство: Springer Рейтинг: Цена: 20537.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The areas covered included topics in the analysis of repeated measurements, cluster analysis, discriminant analysis, canonical cor- relations, distribution theory and testing, bivariate densi ty estimation, factor analysis, principle component analysis, multidimensional scaling, multivariate linear models, nonparametric regression, etc.
Автор: H. Bozdogan; Arjun K. Gupta Название: Multivariate Statistical Modeling and Data Analysis ISBN: 9027725926 ISBN-13(EAN): 9789027725929 Издательство: Springer Рейтинг: Цена: 20537.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The areas covered included topics in the analysis of repeated measurements, cluster analysis, discriminant analysis, canonical cor- relations, distribution theory and testing, bivariate densi ty estimation, factor analysis, principle component analysis, multidimensional scaling, multivariate linear models, nonparametric regression, etc.
Автор: Bradley Efron and Trevor Hastie Название: Computer Age Statistical Inference ISBN: 1107149894 ISBN-13(EAN): 9781107149892 Издательство: Cambridge Academ Рейтинг: Цена: 9029.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.
Автор: Little Название: Statistical Analysis with Missing Data, Third Edit ion ISBN: 0470526793 ISBN-13(EAN): 9780470526798 Издательство: Wiley Рейтинг: Цена: 12664.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Reflecting new application topics, Statistical Analysis with Missing Data offers a thoroughly up-to-date, reorganized survey of current methodology for handling missing data problems. The third edition reviews historical approaches to the subject and describe rigorous yet simple methods for multivariate analysis with missing values.
Автор: Carlo Bertoluzza; Maria A. Gil; Dan A. Ralescu Название: Statistical Modeling, Analysis and Management of Fuzzy Data ISBN: 3790825018 ISBN-13(EAN): 9783790825015 Издательство: Springer Рейтинг: Цена: 23058.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The contributions in this book state the complementary rather than competitive relationship between Probability and Fuzzy Set Theory and allow solutions to real life problems with suitable combinations of both theories.
Автор: Pierre Duchesne; Bruno R?millard Название: Statistical Modeling and Analysis for Complex Data Problems ISBN: 144193751X ISBN-13(EAN): 9781441937513 Издательство: Springer Рейтинг: Цена: 16769.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Statistical Modeling and Analysis for Complex Data Problems treats some of today's more complex problems and it reflects some of the important research directions in the field. Twenty-nine authors - largely from Montreal's GERAD Multi-University Research Center and who work in areas of theoretical statistics, applied statistics, probability theory, and stochastic processes - present survey chapters on various theoretical and applied problems of importance and interest to researchers and students across a number of academic domains.
Описание: Doubt over the trustworthiness of published empirical results is often a result of statistical mis-specification or invalid probabilistic assumptions. This course in empirical research methods enables the specification and validation of statistical models, facilitating their informed implementation and giving rise to trustworthy evidence.
Описание: Doubt over the trustworthiness of published empirical results is often a result of statistical mis-specification or invalid probabilistic assumptions. This course in empirical research methods enables the specification and validation of statistical models, facilitating their informed implementation and giving rise to trustworthy evidence.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru