Foundations of Hyperbolic Manifolds, John G. Ratcliffe
Автор: Ratcliffe Название: Foundations of Hyperbolic Manifolds ISBN: 0387331972 ISBN-13(EAN): 9780387331973 Издательство: Springer Рейтинг: Цена: 7680.00 р. Наличие на складе: Есть (1 шт.) Описание: This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. This book has been heavily class-tested and each chapter contains exercises and a section of historical remarks.
Автор: Wiggins, Stephen Название: Normally hyperbolic invariant manifolds in dynamical systems ISBN: 1461287340 ISBN-13(EAN): 9781461287346 Издательство: Springer Рейтинг: Цена: 11173.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: An important tool in these studies has been the theory of normally hyperbolic invariant manifolds and foliations of normally hyperbolic invariant manifolds.
Автор: Stephen Wiggins; G. Haller; I. Mezic Название: Normally Hyperbolic Invariant Manifolds in Dynamical Systems ISBN: 038794205X ISBN-13(EAN): 9780387942056 Издательство: Springer Рейтинг: Цена: 11173.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: An important tool in these studies has been the theory of normally hyperbolic invariant manifolds and foliations of normally hyperbolic invariant manifolds.
Автор: Michael Kapovich Название: Hyperbolic Manifolds and Discrete Groups ISBN: 0817649123 ISBN-13(EAN): 9780817649128 Издательство: Springer Рейтинг: Цена: 11878.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Hyperbolic Manifolds and Discrete Groups is at the crossroads of several branches of mathematics: hyperbolic geometry, discrete groups, 3-dimensional topology, geometric group theory, and complex analysis.
Автор: Borthwick Название: Spectral Theory of Infinite-Area Hyperbolic Surfaces ISBN: 3319338757 ISBN-13(EAN): 9783319338750 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This text introduces geometric spectral theory in the context of infinite-area Riemann surfaces, providing a comprehensive account of the most recent developments in the field. For the second edition the context has been extended to general surfaces with hyperbolic ends, which provides a natural setting for development of the spectral theory while still keeping technical difficulties to a minimum. All of the material from the first edition is included and updated, and new sections have been added.Topics covered include an introduction to the geometry of hyperbolic surfaces, analysis of the resolvent of the Laplacian, scattering theory, resonances and scattering poles, the Selberg zeta function, the Poisson formula, distribution of resonances, the inverse scattering problem, Patterson-Sullivan theory, and the dynamical approach to the zeta function. The new sections cover the latest developments in the field, including the spectral gap, resonance asymptotics near the critical line, and sharp geometric constants for resonance bounds. A new chapter introduces recently developed techniques for resonance calculation that illuminate the existing results and conjectures on resonance distribution.The spectral theory of hyperbolic surfaces is a point of intersection for a great variety of areas, including quantum physics, discrete groups, differential geometry, number theory, complex analysis, and ergodic theory. This book will serve as a valuable resource for graduate students and researchers from these and other related fields. Review of the first edition:'The exposition is very clear and thorough, and essentially self-contained; the proofs are detailed...The book gathers together some material which is not always easily available in the literature...To conclude, the book is certainly at a level accessible to graduate students and researchers from a rather large range of fields. Clearly, the reader...would certainly benefit greatly from it.' (Colin Guillarmou, Mathematical Reviews, Issue 2008 h)
Описание: The automorphisms of a two-generator free group $\mathsf F_2$ acting on the space of orientation-preserving isometric actions of $\mathsf F_2$ on hyperbolic 3-space defines a dynamical system.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru