Описание: In this practical and comprehensive guide, author Martin Kleppmann helps you navigate this diverse landscape by examining the pros and cons of various technologies for processing and storing data.
Автор: Solomon Michael G. Название: Blockchain Data Analytics for Dummies ISBN: 1119651778 ISBN-13(EAN): 9781119651772 Издательство: Wiley Рейтинг: Цена: 4117.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Get ahead of the curve-learn about big data on the blockchain Blockchain came to prominence as the disruptive technology that made cryptocurrencies work. Now, data pros are using blockchain technology for faster real-time analysis, better data security, and more accurate predictions. Blockchain Data Analytics For Dummies is your quick-start guide to harnessing the potential of blockchain.
Inside this book, technologists, executives, and data managers will find information and inspiration to adopt blockchain as a big data tool. Blockchain expert Michael G. Solomon shares his insight on what the blockchain is and how this new tech is poised to disrupt data.
Set your organization on the cutting edge of analytics, before your competitors get there! Learn how blockchain technologies work and how they can integrate with big dataDiscover the power and potential of blockchain analyticsEstablish data models and quickly mine for insights and resultsCreate data visualizations from blockchain analysis Discover how blockchains are disrupting the data world with this exciting title in the trusted For Dummies line!
Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.
Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.
Please visit the book companion website at https: //www.cs.waikato.ac.nz/ ml/weka/book.html.
It contains
Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.
Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
Includes open-access online courses that introduce practical applications of the material in the book
Автор: Abu-Salih Bilal, Wongthongtham Pornpit, Zhu Dengya Название: Social Big Data Analytics: Practices, Techniques, and Applications ISBN: 9813366516 ISBN-13(EAN): 9789813366510 Издательство: Springer Цена: 19564.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Chapter 1: Big data technologies
Big data is no more "all just hype" but widely applied in nearly all aspects of our business, governments, and organizations with the technology stack of AI. Its influences are far beyond a simple technique innovation but involves all rears in the world. This chapter will first have historical review of big data; followed by discussion of characteristics of big data, i.e. the 3V's to up 10V's of big data. The chapter then introduces technology stacks for an organization to build a big data application, from infrastructure/platform/ecosystem to constructional units/components; following by several successful examples. Finally, we provide some big data online resources for reference.
Chapter 2: Credibility and influence in social big data
Online Social Networks (OSNs) are a fertile medium through which users can express their sentiments and share their opinions, experiences and knowledge of several topics. There is a deficiency of assessment mechanisms that incorporate domain-based trustworthiness. In OSNs, determining users' influence in a particular domain has been driven by its significance in a broad range of applications such as personalized recommendation systems, opinion analysis, expertise retrieval, to name a few. This chapter presents a comprehensive framework that aims to infer value from BSD by measuring the domain-based trustworthiness of OSN users, addressing the main features of big data, and incorporating semantic analysis and the temporal factor.
Chapter 3: Semantic data discovery from social big data
The challenge of managing and extracting useful knowledge from social media data sources has attracted much attention from academia and industry. Social big data is an important big data island; thus, social data analytics are intended to make sense of data and to obtain value from data. Social big data provides a wealth of information that businesses, political governments, organisations, etc. can mine and analyse to exploit value in a variety of areas. This chapter discusses the development of an approach that aims to semantically analyse social content, thus enriching social data with semantic conceptual representation for domain-based discovery.
Chapter 4: Predictive analytics using social big data and machine learning
Previous works in the area of topic distillation and discovery lack an appropriate and applicable technical solution that can handle the complex task of obtaining an accurate interpretation of the contextual social content. This is evident through the inadequacy of these endeavours in addressing the topics of microblogging short messages like tweets, and their inability to classify and predict the messages' actual and precise domains of interest at the user level. Hence, this chapter intends to address this problem by presenting solutions to domain-based classification and prediction of social big data at the user and tweet levels incorporating comprehensive knowledge discovery tools and well-known machine learning algorithms.
Chapter 5: Affective design in the era of big social data
In today's competitive market, product designers not only need to optimize functional qualities when developing a new product, but also they need to optimize the affective qualities of the product. The reason is that products with high affective qualities is more likely to attract more potential consumers to buy. In the past, affective design is generally conducted based on the limited amount of customer survey data which is collected from marketing questionnaires and consumer interviews. Since the data amount is limited, the affective design cannot fully reflect the current or even the recent situation of the marketplaces. Thanks to the advanced computing and web technologies, big data from social media or product reviews in w
Описание: For centuries people have recognised the importance of language in creating and applying law. This edited volume shows scholars and students how modern linguistics and related fields contribute to understanding the role language plays, and what follows from viewing law`s power as a matter of situated communication in specific social relations rather than an abstract system of rules.
Описание: Sometimes you get tired, doing this thing we call justice. You feel burned out or disillusioned. Sometimes you just need a word from the Lord. In these daily devotions, Donna Barber offers life-giving words of renewal and hope for those engaged in the resistance to injustice. When your legs are tired from marching and your knees are bruised from kneeling, you can experience rest and healing.
Описание: The long-awaited, comprehensive guide to practical credit risk modeling Credit Risk Analytics provides a targeted training guide for risk managers looking to efficiently build or validate in-house models for credit risk management.
Описание: This book is the first overview on Deep Learning (DL) for biomedical data analysis. The reader will require some familiarity with AI, ML and DL and will learn about techniques and approaches that deal with the most important and/or the newest topics encountered in the field of DL for biomedical data analysis.
Computational Learning Approaches to Data Analytics in Biomedical Applications provides a unified framework for biomedical data analysis using varied machine learning and statistical techniques. It presents insights on biomedical data processing, innovative clustering algorithms and techniques, and connections between statistical analysis and clustering. The book introduces and discusses the major problems relating to data analytics, provides a review of influential and state-of-the-art learning algorithms for biomedical applications, reviews cluster validity indices and how to select the appropriate index, and includes an overview of statistical methods that can be applied to increase confidence in the clustering framework and analysis of the results obtained.
Описание: In this practical guide, four Kubernetes professionals with deep experience in distributed systems, enterprise application development, and open source will guide you through the process of building applications with this container orchestration system.
Автор: Bouarara Hadj Ahmed Название: Advanced Deep Learning Applications in Big Data Analytics ISBN: 1799827925 ISBN-13(EAN): 9781799827924 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 23199.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Explores architecture and applications of deep learning algorithms in big data and the IoT. Highlighting a wide range of topics such as artificial intelligence, cloud computing, and neural networks, this book is designed for engineers, data analysts, data scientists, IT specialists, marketers, researchers, academics, and students.
Автор: Bouarara Hadj Ahmed Название: Advanced Deep Learning Applications in Big Data Analytics ISBN: 1799827917 ISBN-13(EAN): 9781799827917 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 30723.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Interest in big data has swelled within the scholarly community as has increased attention to the internet of things (IoT). Algorithms are constructed in order to parse and analyze all this data to facilitate the exchange of information. However, big data has suffered from problems in connectivity, scalability, and privacy since its birth. The application of deep learning algorithms has helped process those challenges and remains a major issue in today's digital world. Advanced Deep Learning Applications in Big Data Analytics is a pivotal reference source that aims to develop new architecture and applications of deep learning algorithms in big data and the IoT. Highlighting a wide range of topics such as artificial intelligence, cloud computing, and neural networks, this book is ideally designed for engineers, data analysts, data scientists, IT specialists, programmers, marketers, entrepreneurs, researchers, academicians, and students.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru