Описание: Defines the notion of an activity model learned from sensor data and presents key algorithms that form the core of the field Activity Learning: Discovering, Recognizing and Predicting Human Behavior from Sensor Data provides an in-depth look at computational approaches to activity learning from sensor data.
Автор: Atin Basuchoudhary; James T. Bang; Tinni Sen Название: Machine-learning Techniques in Economics ISBN: 3319690132 ISBN-13(EAN): 9783319690131 Издательство: Springer Рейтинг: Цена: 7685.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book develops a machine-learning framework for predicting economic growth. While machine learning itself is not a new idea, advances in computing technology combined with a dawning realization of its applicability to economic questions makes it a new tool for economists.
Автор: Yogesh K. Dwivedi; Michael R. Wade; Scott L. Schne Название: Information Systems Theory ISBN: 1461429706 ISBN-13(EAN): 9781461429708 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book details the many prominent theories, models and related research approaches of Information Systems (IS) research to provide a comprehensive understanding of the subject, making it a practical reference for practitioners and researchers.
Название: Predicting structured data ISBN: 0262528045 ISBN-13(EAN): 9780262528047 Издательство: MIT Press Рейтинг: Цена: 8554.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
State-of-the-art algorithms and theory in a novel domain of machine learning, prediction when the output has structure.
Machine learning develops intelligent computer systems that are able to generalize from previously seen examples. A new domain of machine learning, in which the prediction must satisfy the additional constraints found in structured data, poses one of machine learning's greatest challenges: learning functional dependencies between arbitrary input and output domains. This volume presents and analyzes the state of the art in machine learning algorithms and theory in this novel field. The contributors discuss applications as diverse as machine translation, document markup, computational biology, and information extraction, among others, providing a timely overview of an exciting field.
Contributors Yasemin Altun, Gokhan Bakir, Olivier Bousquet, Sumit Chopra, Corinna Cortes, Hal Daume III, Ofer Dekel, Zoubin Ghahramani, Raia Hadsell, Thomas Hofmann, Fu Jie Huang, Yann LeCun, Tobias Mann, Daniel Marcu, David McAllester, Mehryar Mohri, William Stafford Noble, Fernando Perez-Cruz, Massimiliano Pontil, Marc'Aurelio Ranzato, Juho Rousu, Craig Saunders, Bernhard Scholkopf, Matthias W. Seeger, Shai Shalev-Shwartz, John Shawe-Taylor, Yoram Singer, Alexander J. Smola, Sandor Szedmak, Ben Taskar, Ioannis Tsochantaridis, S.V.N Vishwanathan, Jason Weston
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru