Описание: This book introduces reinforcement learning, and provides novel ideas and use cases to demonstrate the benefits of using reinforcement learning for Cyber Physical Systems. Two important case studies on applying reinforcement learning to cybersecurity problems are included.
Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data.
The updated edition of this practical book uses concrete examples, minimal theory, and three production-ready Python frameworks--scikit-learn, Keras, and TensorFlow--to help you gain an intuitive understanding of the concepts and tools for building intelligent systems. You'll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you've learned, all you need is programming experience to get started.
Автор: Mahrishi Mehul, Hiran Kamal Kant, Meena Gaurav Название: Machine Learning and Deep Learning in Real-Time Applications ISBN: 1799830950 ISBN-13(EAN): 9781799830955 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 30723.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Artificial intelligence and its various components are rapidly engulfing almost every professional industry. Specific features of AI that have proven to be vital solutions to numerous real-world issues are machine learning and deep learning. These intelligent agents unlock higher levels of performance and efficiency, creating a wide span of industrial applications. However, there is a lack of research on the specific uses of machine/deep learning in the professional realm. Machine Learning and Deep Learning in Real-Time Applications provides emerging research exploring the theoretical and practical aspects of machine learning and deep learning and their implementations as well as their ability to solve real-world problems within several professional disciplines including healthcare, business, and computer science. Featuring coverage on a broad range of topics such as image processing, medical improvements, and smart grids, this book is ideally designed for researchers, academicians, scientists, industry experts, scholars, IT professionals, engineers, and students seeking current research on the multifaceted uses and implementations of machine learning and deep learning across the globe.
Автор: Oliver Niggemann; J?rgen Beyerer Название: Machine Learning for Cyber Physical Systems ISBN: 3662488361 ISBN-13(EAN): 9783662488362 Издательство: Springer Рейтинг: Цена: 19591.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Development of a Cyber-Physical System based on selective dynamic Gaussian naive Bayes model for a self-predict laser surface heat treatment processcontrol.- Evidence Grid Based Information Fusion for Semantic Classifiers in Dynamic Sensor Networks.- Forecasting Cellular Connectivity for Cyber-Physical Systems: A Machine Learning Approach.- Towards Optimized Machine Operations by Cloud Integrated Condition Estimation.- Prognostics Health Management System based on Hybrid Model to Predict Failures of a Planetary Gear Transmission.- Evaluation of Model-Based Condition Monitoring Systems in Industrial Application Cases.- Towards a novel learning assistant for networked automation systems.- Effcient Image Processing System for an Industrial Machine Learning Task.- Efficient engineering in special purpose machinery through automated control code synthesis based on a functional categorisation.- Geo-Distributed Analytics for the Internet of Things.- Implementation and Comparison of Cluster-Based PSO Extensions in Hybrid Settings with Efficient Approximation.- Machine-specifc Approach for Automatic Classifcation of Cutting Process Efficiency.- Meta-analysis of Maintenance Knowledge Assets Towards Predictive Cost Controlling of Cyber Physical Production Systems.- Towards Autonomously Navigating and Cooperating Vehicles in Cyber-Physical Production Systems.
Автор: J?rgen Beyerer; Oliver Niggemann; Christian K?hner Название: Machine Learning for Cyber Physical Systems ISBN: 3662538059 ISBN-13(EAN): 9783662538050 Издательство: Springer Рейтинг: Цена: 23757.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The work presents new approaches to Machine Learning for Cyber Physical Systems, experiences and visions. It contains some selected papers from the international Conference ML4CPS – Machine Learning for Cyber Physical Systems, which was held in Karlsruhe, September 29th, 2016. Cyber Physical Systems are characterized by their ability to adapt and to learn: They analyze their environment and, based on observations, they learn patterns, correlations and predictive models. Typical applications are condition monitoring, predictive maintenance, image processing and diagnosis. Machine Learning is the key technology for these developments.
Автор: Mahrishi Mehul, Hiran Kamal Kant, Meena Gaurav Название: Machine Learning and Deep Learning in Real-Time Applications ISBN: 1799830969 ISBN-13(EAN): 9781799830962 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 23199.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Presents research exploring the theoretical and practical aspects of machine learning and deep learning and their implementations as well as their ability to solve real-world problems within several professional disciplines including healthcare, business, and computer science.
Автор: Goutam Kumar Bose, Pritam Pain Название: Machine Learning Applications in Non-Conventional Machining Processes ISBN: 1799836258 ISBN-13(EAN): 9781799836254 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 23978.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Traditional machining has many limitations in today's technology-driven world, which has caused industrial professionals to begin implementing various optimization techniques within their machining processes. The application of methods including machine learning and genetic algorithms has recently transformed the manufacturing industry and created countless opportunities in non-traditional machining methods. Significant research in this area, however, is still considerably lacking.
Machine Learning Applications in Non-Conventional Machining Processes is a collection of innovative research on the advancement of intelligent technology in industrial environments and its applications within the manufacturing field. While highlighting topics including evolutionary algorithms, micro-machining, and artificial neural networks, this book is ideally designed for researchers, academicians, engineers, managers, developers, practitioners, industrialists, and students seeking current research on intelligence-based machining processes in today's technology-driven market.
Автор: Goutam Kumar Bose, Pritam Pain Название: Machine Learning Applications in Non-Conventional Machining Processes ISBN: 179983624X ISBN-13(EAN): 9781799836247 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 31046.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Traditional machining has many limitations in today's technology-driven world, which has caused industrial professionals to begin implementing various optimization techniques within their machining processes. The application of methods including machine learning and genetic algorithms has recently transformed the manufacturing industry and created countless opportunities in non-traditional machining methods. Significant research in this area, however, is still considerably lacking.
Machine Learning Applications in Non-Conventional Machining Processes is a collection of innovative research on the advancement of intelligent technology in industrial environments and its applications within the manufacturing field. While highlighting topics including evolutionary algorithms, micro-machining, and artificial neural networks, this book is ideally designed for researchers, academicians, engineers, managers, developers, practitioners, industrialists, and students seeking current research on intelligence-based machining processes in today's technology-driven market.
Автор: Marta E. Zorrilla, Jose-Norberto Mazon, Oscar Ferrandez, Irene Garrigos, Florian Daniel Название: Business Intelligence Applications and the Web: Models, Systems and Technologies ISBN: 1613500386 ISBN-13(EAN): 9781613500385 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 27027.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Summarises current research advances in BI and the Web, emphasizing research solutions, techniques, and methodologies which combine both areas in the interest of building better BI solutions. This comprehensive collection emphasises the interconnections that exist among the two research areas and to highlight the benefits of combined use of BI and Web practices.
Описание: This book is the inaugural volume in the new Springer series on Learning and Analytics in Intelligent Systems. The series aims at providing, in hard-copy and soft-copy form, books on all aspects of learning, analytics, advanced intelligent systems and related technologies. These disciplines are strongly related and mutually complementary; accordingly, the new series encourages an integrated approach to themes and topics in these disciplines, which will result in significant cross-fertilization, research advances and new knowledge creation. To maximize the dissemination of research findings, the series will publish edited books, monographs, handbooks, textbooks and conference proceedings. This book is intended for professors, researchers, scientists, engineers and students. An extensive list of references at the end of each chapter allows readers to probe further into those application areas that interest them most.
Описание: Artificial intelligence is at the forefront of research and implementation in many industries including healthcare and agriculture. Whether it's detecting disease or generating algorithms, deep learning techniques are advancing exponentially. Researchers and professionals need a platform in which they can keep up with machine learning trends and their developments in the real world.
The Handbook of Research on Applications and Implementations of Machine Learning Techniques provides innovative insights into the multi-disciplinary applications of machine learning algorithms for data analytics. The content within this publication examines disease identification, neural networks, and language support. It is designed for IT professionals, developers, data analysts, technology specialists, R&D professionals, industrialists, practitioners, researchers, academicians, and students seeking research on deep learning procedures and their enactments in the fields of medicine, engineering, and computer science.
Описание: This book is the inaugural volume in the new Springer series on Learning and Analytics in Intelligent Systems. accordingly, the new series encourages an integrated approach to themes and topics in these disciplines, which will result in significant cross-fertilization, research advances and new knowledge creation.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru