Introduction to Machine Learning in the Cloud with Python: Concepts and Practices, Gupta Pramod, Sehgal Naresh K.
Автор: Boyd Stephen Название: Introduction to Applied Linear Algebra ISBN: 1316518965 ISBN-13(EAN): 9781316518960 Издательство: Cambridge Academ Рейтинг: Цена: 6811.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A groundbreaking introductory textbook covering the linear algebra methods needed for data science and engineering applications. It combines straightforward explanations with numerous practical examples and exercises from data science, machine learning and artificial intelligence, signal and image processing, navigation, control, and finance.
Описание: Please note that this book is not a sequel to the First Edition, but rather a restructured and revamped version of the First Edition. Ready to crank up a virtual server and smash through petabytes of data? Want to add 'Machine Learning' to your LinkedIn profile?Well, hold on there...Before you embark on your epic journey into the world of machine learning, there is some theory and statistical principles to march through first. But rather than spend $30-$50 USD on a dense long textbook, you may want to read this book first. As a clear and concise alternative to a textbook, this book provides a practical and high-level introduction to the practical components and statistical concepts found in machine learning. Machine Learning for Absolute Beginners Second Edition has been written and designed for absolute beginners. This means plain-English explanations and no coding experience required. Where core algorithms are introduced, clear explanations and visual examples are added to make it easy and engaging to follow along at home.This major new edition features many topics not covered in the First Edition, including Cross Validation, Data Scrubbing and Ensemble Modeling. Please note that this book is not a sequel to the First Edition, but rather a restructured and revamped version of the First Edition. Readers of the First Edition should not feel compelled to purchase this Second Edition. Disclaimer: If you have passed the 'beginner' stage in your study of machine learning and are ready to tackle coding and deep learning, you would be well served with a long-format textbook. If, however, you are yet to reach that Lion King moment
Автор: Kingma, Diederik P. Welling, Max Название: Introduction to variational autoencoders ISBN: 1680836226 ISBN-13(EAN): 9781680836226 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 10118.00 р. Наличие на складе: Поставка под заказ.
Описание: Presents an introduction to the framework of variational autoencoders (VAEs) that provides a principled method for jointly learning deep latent-variable models and corresponding inference models using stochastic gradient descent.
Автор: Alpaydin Ethem Название: Introduction to Machine Learning ISBN: 0262043793 ISBN-13(EAN): 9780262043793 Издательство: MIT Press Рейтинг: Цена: 14390.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A substantially revised fourth edition of a comprehensive textbook, including new coverage of recent advances in deep learning and neural networks.
The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Machine learning underlies such exciting new technologies as self-driving cars, speech recognition, and translation applications. This substantially revised fourth edition of a comprehensive, widely used machine learning textbook offers new coverage of recent advances in the field in both theory and practice, including developments in deep learning and neural networks.
The book covers a broad array of topics not usually included in introductory machine learning texts, including supervised learning, Bayesian decision theory, parametric methods, semiparametric methods, nonparametric methods, multivariate analysis, hidden Markov models, reinforcement learning, kernel machines, graphical models, Bayesian estimation, and statistical testing. The fourth edition offers a new chapter on deep learning that discusses training, regularizing, and structuring deep neural networks such as convolutional and generative adversarial networks; new material in the chapter on reinforcement learning that covers the use of deep networks, the policy gradient methods, and deep reinforcement learning; new material in the chapter on multilayer perceptrons on autoencoders and the word2vec network; and discussion of a popular method of dimensionality reduction, t-SNE. New appendixes offer background material on linear algebra and optimization. End-of-chapter exercises help readers to apply concepts learned. Introduction to Machine Learning can be used in courses for advanced undergraduate and graduate students and as a reference for professionals.
Автор: Slivkins, Aleksandrs Название: Introduction to multi-armed bandits ISBN: 168083620X ISBN-13(EAN): 9781680836202 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 13306.00 р. Наличие на складе: Поставка под заказ.
Описание: Provides a textbook like treatment of multi-armed bandits. The work on multi-armed bandits can be partitioned into a dozen or so directions. Each chapter tackles one line of work, providing a self-contained introduction and pointers for further reading.
Автор: Gopinath Rebala; Ajay Ravi; Sanjay Churiwala Название: An Introduction to Machine Learning ISBN: 3030157288 ISBN-13(EAN): 9783030157289 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Just like electricity, Machine Learning will revolutionize our life in many ways – some of which are not even conceivable today. This book provides a thorough conceptual understanding of Machine Learning techniques and algorithms. Many of the mathematical concepts are explained in an intuitive manner. The book starts with an overview of machine learning and the underlying Mathematical and Statistical concepts before moving onto machine learning topics. It gradually builds up the depth, covering many of the present day machine learning algorithms, ending in Deep Learning and Reinforcement Learning algorithms. The book also covers some of the popular Machine Learning applications. The material in this book is agnostic to any specific programming language or hardware so that readers can try these concepts on whichever platforms they are already familiar with. Offers a comprehensive introduction to Machine Learning, while not assuming any prior knowledge of the topic;Provides a complete overview of available techniques and algorithms in conceptual terms, covering various application domains of machine learning;Not tied to any specific software language or hardware implementation.
Автор: Chirag Shah Название: A Hands-On Introduction to Data Science ISBN: 1108472443 ISBN-13(EAN): 9781108472449 Издательство: Cambridge Academ Рейтинг: Цена: 7286.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A practical introduction to data science with a low barrier entry, this textbook is well-suited to students from a range of disciplines. Assuming no prior knowledge of the subject, the hands-on exercises and real-life application of popular data science tools are accessible even to students without a strong technical background.
Описание: This book introduces Raspberry Pi, using real world applications in computer vision, machine learning, and deep learning. It provides a detailed, step-by-step, approach to application development for users without any prior programming knowledge.
Автор: Mitra, Sushmita , Datta, Sujay , Perkins, Theodo Название: Introduction to Machine Learning and Bioinformatics ISBN: 0367387239 ISBN-13(EAN): 9780367387235 Издательство: Taylor&Francis Рейтинг: Цена: 9798.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Lucidly Integrates Current Activities
Focusing on both fundamentals and recent advances, Introduction to Machine Learning and Bioinformatics presents an informative and accessible account of the ways in which these two increasingly intertwined areas relate to each other.
Examines Connections between Machine Learning & Bioinformatics
The book begins with a brief historical overview of the technological developments in biology. It then describes the main problems in bioinformatics and the fundamental concepts and algorithms of machine learning. After forming this foundation, the authors explore how machine learning techniques apply to bioinformatics problems, such as electron density map interpretation, biclustering, DNA sequence analysis, and tumor classification. They also include exercises at the end of some chapters and offer supplementary materials on their website.
Explores How Machine Learning Techniques Can Help Solve Bioinformatics Problems
Shedding light on aspects of both machine learning and bioinformatics, this text shows how the innovative tools and techniques of machine learning help extract knowledge from the deluge of information produced by today's biological experiments.
Описание: This book introduces Raspberry Pi, using real world applications in computer vision, machine learning, and deep learning. It provides a detailed, step-by-step, approach to application development for users without any prior programming knowledge.
Автор: Hui Jiang Название: Machine Learning Fundamentals: A Concise Introduction ISBN: 1108940021 ISBN-13(EAN): 9781108940023 Издательство: Cambridge Academ Рейтинг: Цена: 7128.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This lucid and coherent introduction to supervised machine learning presents core concepts in a concise, logical and easy-to-follow way for readers with some mathematical preparation but no prior exposure to machine learning. Coverage includes widely used traditional methods plus recently popular deep learning methods.
Описание: This book provides an introduction to machine learning and cloud computing, both from a conceptual level, along with their usage with underlying infrastructure.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru