Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Deep reinforcement learning, Plaat, Aske


Варианты приобретения
Цена: 6986.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Англия: Есть  Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября

Добавить в корзину
в Мои желания

Автор: Plaat, Aske
Название:  Deep reinforcement learning
ISBN: 9789811906374
Издательство: Springer
Классификация:
ISBN-10: 9811906378
Обложка/Формат: Paperback
Страницы: 406
Вес: 0.65 кг.
Дата издания: 01.07.2022
Серия: New frontiers in regional science: asian perspectives
Язык: English
Издание: 1st ed. 2022
Иллюстрации: 87 tables, color; 1 illustrations, black and white; xvi, 410 p. 1 illus.; 87 tables, color; 1 illustrations, black and white; xvi, 410 p. 1 illus.
Размер: 154 x 235 x 28
Читательская аудитория: Professional & vocational
Подзаголовок: Fully worked solutions to over 800 bmat practice questions, alongside time saving techniques, score boosting strategies, and 12 annotated essays. uniadmissions guide for the biomedical admissions test
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Deep reinforcement learning has attracted considerable attention recently. Biology has inspired the creation of artificial neural networks and deep learning, while psychology studies how animals and humans learn, and how subjects` desired behavior can be reinforced with positive and negative stimuli.


Hands-On Reinforcement Learning for Games

Автор: Lanham Micheal
Название: Hands-On Reinforcement Learning for Games
ISBN: 1839214937 ISBN-13(EAN): 9781839214936
Издательство: Неизвестно
Рейтинг:
Цена: 8091.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The AI revolution is here and it is embracing games. Game developers are being challenged to enlist cutting edge AI as part of their games. In this book, you will look at the journey of building capable AI using reinforcement learning algorithms and techniques. You will learn to solve complex tasks and build next-generation games using a ...

Reinforcement Learning

Автор: Richard S. Sutton
Название: Reinforcement Learning
ISBN: 0792392345 ISBN-13(EAN): 9780792392347
Издательство: Springer
Рейтинг:
Цена: 30606.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Reinforcement learning is the learning of mapping from situations to actions so as to maximize a scalar reward or reinforcement signal. The learner is not told which action to take but instead must discover which actions yield the highest reward. This book contains research data on the subject.

Statistical Reinforcement Learning

Автор: Sugiyama
Название: Statistical Reinforcement Learning
ISBN: 1439856893 ISBN-13(EAN): 9781439856895
Издательство: Taylor&Francis
Рейтинг:
Цена: 13014.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Reinforcement learning is a mathematical framework for developing computer agents that can learn an optimal behavior by relating generic reward signals with its past actions. With numerous successful applications in business intelligence, plant control, and gaming, the RL framework is ideal for decision making in unknown environments with large amounts of data.

Supplying an up-to-date and accessible introduction to the field, Statistical Reinforcement Learning: Modern Machine Learning Approaches presents fundamental concepts and practical algorithms of statistical reinforcement learning from the modern machine learning viewpoint. It covers various types of RL approaches, including model-based and model-free approaches, policy iteration, and policy search methods.

  • Covers the range of reinforcement learning algorithms from a modern perspective
  • Lays out the associated optimization problems for each reinforcement learning scenario covered
  • Provides thought-provoking statistical treatment of reinforcement learning algorithms

The book covers approaches recently introduced in the data mining and machine learning fields to provide a systematic bridge between RL and data mining/machine learning researchers. It presents state-of-the-art results, including dimensionality reduction in RL and risk-sensitive RL. Numerous illustrative examples are included to help readers understand the intuition and usefulness of reinforcement learning techniques.

This book is an ideal resource for graduate-level students in computer science and applied statistics programs, as well as researchers and engineers in related fields.

Handbook of Reinforcement Learning and Control

Автор: Vamvoudakis Kyriakos G., Wan Yan, Lewis Frank L.
Название: Handbook of Reinforcement Learning and Control
ISBN: 3030609898 ISBN-13(EAN): 9783030609894
Издательство: Springer
Цена: 32142.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The Cognitive Dialogue: A New Architecture for Perception and Cognition.- Rooftop-Aware Emergency Landing Planning for Small Unmanned Aircraft Systems.- Quantum Reinforcement Learning in Changing Environment.- The Role of Thermodynamics in the Future Research Directions in Control and Learning.- Mixed Density Reinforcement Learning Methods for Approximate Dynamic Programming.- Analyzing and Mitigating Link-Flooding DoS Attacks Using Stackelberg Games and Adaptive Learning.- Learning and Decision Making for Complex Systems Subjected to Uncertainties: A Stochastic Distribution Control Approach.- Optimal Adaptive Control of Partially Unknown Linear Continuous-time Systems with Input and State Delay.- Gradient Methods Solve the Linear Quadratic Regulator Problem Exponentially Fast.- Architectures, Data Representations and Learning Algorithms: New Directions at the Confluence of Control and Learning.- Reinforcement Learning for Optimal Feedback Control and Multiplayer Games.- Fundamental Principles of Design for Reinforcement Learning Algorithms Course Titles.- Long-Term Impacts of Fair Machine Learning.- Learning-based Model Reduction for Partial Differential Equations with Applications to Thermo-Fluid Models' Identification, State Estimation, and Stabilization.- CESMA: Centralized Expert Supervises Multi-Agents, for Decentralization.- A Unified Framework for Reinforcement Learning and Sequential Decision Analytics.- Trading Utility and Uncertainty: Applying the Value of Information to Resolve the Exploration-Exploitation Dilemma in Reinforcement Learning.- Multi-Agent Reinforcement Learning: Recent Advances, Challenges, and Applications.- Reinforcement Learning Applications, An Industrial Perspective.- A Hybrid Dynamical Systems Perspective of Reinforcement Learning.- Bounded Rationality and Computability Issues in Learning, Perception, Decision-Making, and Games Panagiotis Tsiotras.- Mixed Modality Learning.- Computational Intelligence in Uncertainty Quantification for Learning Control and Games.- Reinforcement Learning Based Optimal Stabilization of Unknown Time Delay Systems Using State and Output Feedback.- Robust Autonomous Driving with Humans in the Loop.- Boundedly Rational Reinforcement Learning for Secure Control.

Reinforcement Learning for Cyber-Physical Systems with Cybersecurity Case Studies

Автор: Li, Chong
Название: Reinforcement Learning for Cyber-Physical Systems with Cybersecurity Case Studies
ISBN: 1138543535 ISBN-13(EAN): 9781138543539
Издательство: Taylor&Francis
Рейтинг:
Цена: 12707.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book introduces reinforcement learning, and provides novel ideas and use cases to demonstrate the benefits of using reinforcement learning for Cyber Physical Systems. Two important case studies on applying reinforcement learning to cybersecurity problems are included.

Reinforcement learning algorithms with python

Автор: Lonza, Andrea
Название: Reinforcement learning algorithms with python
ISBN: 1789131111 ISBN-13(EAN): 9781789131116
Издательство: Неизвестно
Рейтинг:
Цена: 7171.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: With this book, you will understand the core concepts and techniques of reinforcement learning. You will take a look into each RL algorithm and will develop your own self-learning algorithms and models. You will optimize the algorithms for better precision, use high-speed actions and lower the risk of anomalies in your applications.

Deep Reinforcement Learning Hands-On - Second Edition

Автор: Lapan Maxim
Название: Deep Reinforcement Learning Hands-On - Second Edition
ISBN: 1838826998 ISBN-13(EAN): 9781838826994
Издательство: Неизвестно
Рейтинг:
Цена: 14712.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: With six new chapters, Deep Reinforcement Learning Hands-On Second edition is completely updated and expanded with the very latest reinforcement learning (RL) tools and techniques, providing you with an introduction to RL, as well as the hands-on ability to code intelligent learning agents to perform a range of practical tasks.

An Introduction to Deep Reinforcement Learning

Автор: Francois-Lavet Vincent, Henderson Peter, Islam Riashat
Название: An Introduction to Deep Reinforcement Learning
ISBN: 1680835386 ISBN-13(EAN): 9781680835380
Издательство: Неизвестно
Рейтинг:
Цена: 13656.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Provides a starting point for understanding deep reinforcement learning. Although written at a research level it provides a comprehensive and accessible introduction to deep reinforcement learning models, algorithms and techniques.

Transfer Learning for Multiagent Reinforcement Learning Systems

Автор: Da Silva Felipe Leno, Reali Costa Anna Helena
Название: Transfer Learning for Multiagent Reinforcement Learning Systems
ISBN: 1636391346 ISBN-13(EAN): 9781636391342
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 8039.00 р.
Наличие на складе: Нет в наличии.

Описание:

Learning to solve sequential decision-making tasks is difficult. Humans take years exploring the environment essentially in a random way until they are able to reason, solve difficult tasks, and collaborate with other humans towards a common goal. Artificial Intelligent agents are like humans in this aspect. Reinforcement Learning (RL) is a well-known technique to train autonomous agents through interactions with the environment. Unfortunately, the learning process has a high sample complexity to infer an effective actuation policy, especially when multiple agents are simultaneously actuating in the environment.

However, previous knowledge can be leveraged to accelerate learning and enable solving harder tasks. In the same way humans build skills and reuse them by relating different tasks, RL agents might reuse knowledge from previously solved tasks and from the exchange of knowledge with other agents in the environment. In fact, virtually all of the most challenging tasks currently solved by RL rely on embedded knowledge reuse techniques, such as Imitation Learning, Learning from Demonstration, and Curriculum Learning.

This book surveys the literature on knowledge reuse in multiagent RL. The authors define a unifying taxonomy of state-of-the-art solutions for reusing knowledge, providing a comprehensive discussion of recent progress in the area. In this book, readers will find a comprehensive discussion of the many ways in which knowledge can be reused in multiagent sequential decision-making tasks, as well as in which scenarios each of the approaches is more efficient. The authors also provide their view of the current low-hanging fruit developments of the area, as well as the still-open big questions that could result in breakthrough developments. Finally, the book provides resources to researchers who intend to join this area or leverage those techniques, including a list of conferences, journals, and implementation tools.

This book will be useful for a wide audience; and will hopefully promote new dialogues across communities and novel developments in the area.

Keras Reinforcement Learning Projects

Автор: Ciaburro Giuseppe
Название: Keras Reinforcement Learning Projects
ISBN: 1789342090 ISBN-13(EAN): 9781789342093
Издательство: Неизвестно
Рейтинг:
Цена: 10114.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Keras Reinforcement Learning Projects book teaches you essential concept, techniques and, models of reinforcement learning using best real-world demonstrations. You will explore popular algorithms such as Markov decision process, Monte Carlo, Q-learning making you equipped with complex statistics in various projects with the help of Keras

TensorFlow 2 Reinforcement Learning Cookbook: Over 50 recipes to help you build, train, and deploy learning agents for real-world applications

Автор: Palanisamy Praveen
Название: TensorFlow 2 Reinforcement Learning Cookbook: Over 50 recipes to help you build, train, and deploy learning agents for real-world applications
ISBN: 183898254X ISBN-13(EAN): 9781838982546
Издательство: Неизвестно
Рейтинг:
Цена: 9010.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This cookbook will help you to gain a solid understanding of deep reinforcement learning (RL) algorithms with the help of concise, easy-to-follow implementations from scratch. You`ll learn how to implement these algorithms with minimal code and develop AI applications to solve real-world and business problems using RL.

Hands-on reinforcement learning with python -

Автор: Ravichandiran, Sudharsan
Название: Hands-on reinforcement learning with python -
ISBN: 1839210680 ISBN-13(EAN): 9781839210686
Издательство: Неизвестно
Рейтинг:
Цена: 9010.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Deep Reinforcement Learning with Python - Second Edition will help you learn reinforcement learning algorithms, techniques and architectures - including deep reinforcement learning - from scratch. This new edition is an extensive update of the original, reflecting the state-of-the-art latest thinking in reinforcement learning.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия