Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Random matrix methods for machine learning, Couillet, Romain Liao, Zhenyu


Варианты приобретения
Цена: 10294.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-09-01
Ориентировочная дата поставки: начало Октября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Couillet, Romain Liao, Zhenyu
Название:  Random matrix methods for machine learning
ISBN: 9781009123235
Издательство: Cambridge Academ
Классификация:



ISBN-10: 1009123238
Обложка/Формат: Hardback
Страницы: 408
Вес: 0.87 кг.
Дата издания: 21.07.2022
Серия: Computing & IT
Язык: English
Иллюстрации: Worked examples or exercises; worked examples or exercises
Размер: 162 x 242 x 30
Читательская аудитория: General (us: trade)
Ключевые слова: Data capture & analysis,Machine learning,Probability & statistics,Signal processing, COMPUTERS / Computer Vision & Pattern Recognition
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание: For graduate students, practitioners, and sophisticated users, this book offers a tutorial approach to the foundations of random matrix theory for machine learning and systematic analyses of advanced applications ranging from power detection to deep neural networks. MATLAB and Python code is provided for all concepts and applications.


Machine Learning

Автор: Kevin Murphy
Название: Machine Learning
ISBN: 0262018020 ISBN-13(EAN): 9780262018029
Издательство: MIT Press
Рейтинг:
Цена: 18622.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.

Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.

The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package -- PMTK (probabilistic modeling toolkit) -- that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

Kernel Methods and Machine Learning

Автор: Kung
Название: Kernel Methods and Machine Learning
ISBN: 110702496X ISBN-13(EAN): 9781107024960
Издательство: Cambridge Academ
Рейтинг:
Цена: 13622.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Containing numerous algorithms and major theorems, this step-by-step guide covers the fundamentals of kernel-based learning theory. Including over two hundred problems and real-world examples, it is an essential resource for graduate students and professionals in computer science, electrical and biomedical engineering. Solutions to problems are provided online for instructors.

Statistical Methods for Recommender Systems

Автор: Agarwal
Название: Statistical Methods for Recommender Systems
ISBN: 1107036070 ISBN-13(EAN): 9781107036079
Издательство: Cambridge Academ
Рейтинг:
Цена: 7602.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Designing algorithms to recommend items such as news articles and movies to users is a challenging task in numerous web applications. The crux of the problem is to rank items based on users' responses to different items to optimize for multiple objectives. Major technical challenges are high dimensional prediction with sparse data and constructing high dimensional sequential designs to collect data for user modeling and system design. This comprehensive treatment of the statistical issues that arise in recommender systems includes detailed, in-depth discussions of current state-of-the-art methods such as adaptive sequential designs (multi-armed bandit methods), bilinear random-effects models (matrix factorization) and scalable model fitting using modern computing paradigms like MapReduce. The authors draw upon their vast experience working with such large-scale systems at Yahoo! and LinkedIn, and bridge the gap between theory and practice by illustrating complex concepts with examples from applications they are directly involved with.

Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods

Автор: Chris Aldrich; Lidia Auret
Название: Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods
ISBN: 1447151844 ISBN-13(EAN): 9781447151845
Издательство: Springer
Рейтинг:
Цена: 16070.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book describes the latest developments in nonlinear methods and their application in fault diagnosis. It details advances in machine learning theory and contains numerous case studies with real-world data from industry.

Swarm Intelligence Methods for Statistical Regression

Автор: Mohanty
Название: Swarm Intelligence Methods for Statistical Regression
ISBN: 1138558184 ISBN-13(EAN): 9781138558182
Издательство: Taylor&Francis
Рейтинг:
Цена: 9033.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Swarm Intelligence Methods for Statistical Regression describes methods from the field of computational swarm intelligence (SI), and how they can be used to overcome the optimization bottleneck encountered in statistical analysis.

Enhanced Machine Learning and Data Mining Methods for Analysing Large Hybrid Electric Vehicle Fleets based on Load Spectrum Data

Автор: Bergmeir
Название: Enhanced Machine Learning and Data Mining Methods for Analysing Large Hybrid Electric Vehicle Fleets based on Load Spectrum Data
ISBN: 3658203668 ISBN-13(EAN): 9783658203665
Издательство: Springer
Рейтинг:
Цена: 10480.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Philipp Bergmeir works on the development and enhancement of data mining and machine learning methods with the aim of analysing automatically huge amounts of load spectrum data that are recorded for large hybrid electric vehicle fleets.

Ensemble Learning: Pattern Classification Using Ensemble Methods (Second Edition)

Автор: Rokach Lior
Название: Ensemble Learning: Pattern Classification Using Ensemble Methods (Second Edition)
ISBN: 9811201951 ISBN-13(EAN): 9789811201950
Издательство: World Scientific Publishing
Рейтинг:
Цена: 17424.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This updated compendium provides a methodical introduction with a coherent and unified repository of ensemble methods, theories, trends, challenges, and applications. More than a third of this edition comprised of new materials, highlighting descriptions of the classic methods, and extensions and novel approaches that have recently been introduced.

Along with algorithmic descriptions of each method, the settings in which each method is applicable and the consequences and tradeoffs incurred by using the method is succinctly featured. R code for implementation of the algorithm is also emphasized.

The unique volume provides researchers, students and practitioners in industry with a comprehensive, concise and convenient resource on ensemble learning methods.

Machine Learning Methods for Reverse Engineering of Defective Structured Surfaces

Автор: Pascal Laube
Название: Machine Learning Methods for Reverse Engineering of Defective Structured Surfaces
ISBN: 3658290161 ISBN-13(EAN): 9783658290160
Издательство: Springer
Рейтинг:
Цена: 9083.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Pascal Laube presents machine learning approaches for three key problems of reverse engineering of defective structured surfaces: parametrization of curves and surfaces, geometric primitive classification and inpainting of high-resolution textures.

Dealing with Imbalanced and Weakly Labelled Data in Machine Learning using Fuzzy and Rough Set Methods

Автор: Sarah Vluymans
Название: Dealing with Imbalanced and Weakly Labelled Data in Machine Learning using Fuzzy and Rough Set Methods
ISBN: 3030046621 ISBN-13(EAN): 9783030046620
Издательство: Springer
Рейтинг:
Цена: 19564.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This book presents novel classification algorithms for four challenging prediction tasks, namely learning from imbalanced, semi-supervised, multi-instance and multi-label data. The methods are based on fuzzy rough set theory, a mathematical framework used to model uncertainty in data. The book makes two main contributions: helping readers gain a deeper understanding of the underlying mathematical theory; and developing new, intuitive and well-performing classification approaches. The authors bridge the gap between the theoretical proposals of the mathematical model and important challenges in machine learning.
The intended readership of this book includes anyone interested in learning more about fuzzy rough set theory and how to use it in practical machine learning contexts. Although the core audience chiefly consists of mathematicians, computer scientists and engineers, the content will also be interesting and accessible to students and professionals from a range of other fields.
Information-Theoretic Methods in Data Science

Автор: Miguel R. D. Rodrigues, Yonina C. Eldar
Название: Information-Theoretic Methods in Data Science
ISBN: 1108427138 ISBN-13(EAN): 9781108427135
Издательство: Cambridge Academ
Рейтинг:
Цена: 13622.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The first unified treatment of the interface between information theory and emerging topics in data science, written in a clear, tutorial style. Covering topics such as data acquisition, representation, analysis, and communication, it is ideal for graduate students and researchers in information theory, signal processing, and machine learning.

Python machine learning -

Автор: Raschka, Sebastian Mirjalili, Vahid
Название: Python machine learning -
ISBN: 1787125939 ISBN-13(EAN): 9781787125933
Издательство: Неизвестно
Цена: 8091.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This second edition of Python Machine Learning by Sebastian Raschka is for developers and data scientists looking for a practical approach to machine learning and deep learning. In this updated edition, you`ll explore the machine learning process using Python and the latest open source technologies, including scikit-learn and TensorFlow 1.x.

Time and Causality Across the Sciences

Автор: Samantha Kleinberg
Название: Time and Causality Across the Sciences
ISBN: 1108476678 ISBN-13(EAN): 9781108476676
Издательство: Cambridge Academ
Рейтинг:
Цена: 9186.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides an entry point for researchers in any field, bringing together perspectives collected from a large body of work on causality across disciplines. Topics include whether quantum mechanics allows causes to precede their effects, the integration of mechanisms, and insight into the role played by intervention and timing information.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия