Описание: Focusing on comprehensive comparisons of the performance of stochastic optimization algorithms, this book provides an overview of the current approaches used to analyze algorithm performance in a range of common scenarios, while also addressing issues that are often overlooked. In turn, it shows how these issues can be easily avoided by applying the principles that have produced Deep Statistical Comparison and its variants. The focus is on statistical analyses performed using single-objective and multi-objective optimization data. At the end of the book, examples from a recently developed web-service-based e-learning tool (DSCTool) are presented. The tool provides users with all the functionalities needed to make robust statistical comparison analyses in various statistical scenarios. The book is intended for newcomers to the field and experienced researchers alike. For newcomers, it covers the basics of optimization and statistical analysis, familiarizing them with the subject matter before introducing the Deep Statistical Comparison approach. Experienced researchers can quickly move on to the content on new statistical approaches. The book is divided into three parts: Part I: Introduction to optimization, benchmarking, and statistical analysis – Chapters 2-4. Part II: Deep Statistical Comparison of meta-heuristic stochastic optimization algorithms – Chapters 5-7. Part III: Implementation and application of Deep Statistical Comparison – Chapter 8.
Описание: In the last decades, algorithmic advances as well as hardware and software improvements have provided an excellent environment to create and develop solving methods to hard optimization problems.
Описание: This book focuses on the fields of nature-inspired algorithms, optimization problems and fuzzy logic. In this book, a new metaheuristic based on String Theory from Physics is proposed. It is important to mention that we have proposed the new algorithm to generate new potential solutions in optimization problems in order to find new ways that could improve the results in solving these problems. We are presenting the results for the proposed method in different cases of study. The first case, is optimization of traditional benchmark mathematical functions. The second case, is the optimization of benchmark functions of the CEC 2015 Competition and we are also presenting results of the CEC 2017 Competition on Constrained Real-Parameter Optimization that are problems that contain the presence of constraints that alter the shape of the search space making them more difficult to solve. Finally, in the third case, we are presenting the optimization of a fuzzy inference system, specifically for finding the optimal design of a fuzzy controller for an autonomous mobile robot. It is important to mention that in all study cases we are presenting statistical tests in or-der to validate the performance of proposed method. In summary, we believe that this book will be of great interest to a wide audience, ranging from engineering and science graduate students, to researchers and professors in computational intelligence, metaheuristics, optimization, robotics and control.
Название: Meta-heuristic Optimization Techniques ISBN: 3110716178 ISBN-13(EAN): 9783110716177 Издательство: Walter de Gruyter Рейтинг: Цена: 24909.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Without mathematics no science would survive. This especially applies to the engineering sciences which highly depend on the applications of mathematics and mathematical tools such as optimization techniques, finite element methods, differential equations, fluid dynamics, mathematical modelling, and simulation. Neither optimization in engineering, nor the performance of safety-critical system and system security; nor high assurance software architecture and design would be possible without the development of mathematical applications.
De Gruyter Series on the Applications of Mathematics in Engineering and Information Sciences (AMEIS) focusses on the latest applications of engineering and information technology that are possible only with the use of mathematical methods. By identifying the gaps in knowledge of engineering applications the AMEIS series fosters the international interchange between the sciences and keeps the reader informed about the latest developments.
Описание: This book explores Autonomic Nervous System (ANS) dynamics as investigated through Electrodermal Activity (EDA) processing. It presents groundbreaking research in the technical field of biomedical engineering, especially biomedical signal processing, as well as clinical fields of psychometrics, affective computing, and psychological assessment. This volume describes some of the most complete, effective, and personalized methodologies for extracting data from a non-stationary, nonlinear EDA signal in order to characterize the affective and emotional state of a human subject. These methodologies are underscored by discussion of real-world applications in mood assessment. The text also examines the physiological bases of emotion recognition through noninvasive monitoring of the autonomic nervous system. This is an ideal book for biomedical engineers, physiologists, neuroscientists, engineers, applied mathmeticians, psychiatric and psychological clinicians, and graduate students in these fields. This book also: Expertly introduces a novel approach for EDA analysis based on convex optimization and sparsity, a topic of rapidly increasing interest Authoritatively presents groundbreaking research achieved using EDA as an exemplary biomarker of ANS dynamics Deftly explores EDA's potential as a source of reliable and effective markers for the assessment of emotional responses in healthy subjects, as well as for the recognition of pathological mood states in bipolar patients
Автор: Kumar, Kaushik (associate Professor, Department Of Название: Optimizing engineering problems through heuristic techniques ISBN: 1138485365 ISBN-13(EAN): 9781138485365 Издательство: Taylor&Francis Рейтинг: Цена: 25265.00 р. Наличие на складе: Поставка под заказ.
Описание: This book will cover the issues related to optimization of engineering problems using heuristic techniques, with an industrial outlook. It will cover a broad area related to optimization of real life complex engineering problems. It will explore wide perspectives and future directions in industrial engineering research on a global platform.
Описание: Introduction.- Theory and Background.- Problems Statement.- Methodology.- Simulation Results.- Statistical Analysis and Comparison of Results.
Автор: Lee Название: Heuristic Optimization Methods ISBN: 1119602297 ISBN-13(EAN): 9781119602293 Издательство: Wiley Рейтинг: Цена: 20426.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Through a historical perspective on the long-studied Arashiyama population of Japanese macaques, this book reviews the range of current primatological research topics, including life history, sexual, social and cultural behaviour and ecology. It highlights the historic value of the Arashiyama group and illustrates its continuing importance with significant new research.
Описание: Classical optimization methodologies fall short in very large and complex domains. In this book is suggested a different approach to optimization, an approach which is based on the 'blind' and heuristic mechanisms of evolution and population genetics. The genetic approach to optimization introduces a new philosophy to optimization in general, but particularly to engineering. By introducing the 'genetic' approach to robot trajectory generation, much can be learned about the adaptive mechanisms of evolution and how these mechanisms can solve real world problems. It is suggested further that optimization at large may benefit greatly from the adaptive optimization exhibited by natural systems when attempting to solve complex optimization problems, and that the determinism of classical optimization models may sometimes be an obstacle in nonlinear systems.This book is unique in that it reports in detail on an application of genetic algorithms to a real world problem, and explains the considerations taken during the development work. Futhermore, it addresses robotics in two new aspects: the optimization of the trajectory specification which has so far been done by human operators and has not received much attention for both automation and optimization, and the introduction of a heuristic strategy to a field predominated by deterministic strategies.Request Inspection Copy
Описание: In a new approach to possibilistic clustering, the sought clustering structure of the set is based directly on the formal definition of fuzzy cluster and possibilistic memberships are determined directly from the values of the pairwise similarity of objects.
Автор: Jonas Mockus; William Eddy; Gintaras Reklaitis Название: Bayesian Heuristic Approach to Discrete and Global Optimization ISBN: 1441947671 ISBN-13(EAN): 9781441947673 Издательство: Springer Рейтинг: Цена: 37594.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Bayesian decision theory is known to provide an effective framework for the practical solution of discrete and nonconvex optimization problems. This book is the first to demonstrate that this framework is also well suited for the exploitation of heuristic methods in the solution of such problems, especially those of large scale for which exact optimization approaches can be prohibitively costly. The book covers all aspects ranging from the formal presentation of the Bayesian Approach, to its extension to the Bayesian Heuristic Strategy, and its utilization within the informal, interactive Dynamic Visualization strategy. The developed framework is applied in forecasting, in neural network optimization, and in a large number of discrete and continuous optimization problems. Specific application areas which are discussed include scheduling and visualization problems in chemical engineering, manufacturing process control, and epidemiology. Computational results and comparisons with a broad range of test examples are presented. The software required for implementation of the Bayesian Heuristic Approach is included. Although some knowledge of mathematical statistics is necessary in order to fathom the theoretical aspects of the development, no specialized mathematical knowledge is required to understand the application of the approach or to utilize the software which is provided. Audience: The book is of interest to both researchers in operations research, systems engineering, and optimization methods, as well as applications specialists concerned with the solution of large scale discrete and/or nonconvex optimization problems in a broad range of engineering and technological fields. It may be used as supplementary material for graduate level courses.
Описание: Computer Science and Operations Research continue to have a synergistic relationship and this book - as a part of the Operations Research and Computer Science Interface Series - sits squarely in the center of the confluence of these two technical research communities.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru