Описание: Detect fraud earlier to mitigate loss and prevent cascading damage Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques is an authoritative guidebook for setting up a comprehensive fraud detection analytics solution.
As data holdings get bigger and questions get harder, data scientists and analysts must focus on the systems, the tools and techniques, and the disciplined process to get the correct answer, quickly Whether you work within industry or government, this book will provide you with a foundation to successfully and confidently process large amounts of quantitative data.
Here are just a dozen of the many questions answered within these pages:
What does quantitative analysis of a system really mean?
What is a system?
What are big data and analystics?
How do you know your numbers are good?
What will the future data science environment look like?
How do you determine data provenance?
How do you gather and process information, and then organize, store, and synthesize it?
How does an organization implement data analytics?
Do you really need to think like a Chief Information Officer?
What is the best way to protect data?
What makes a good dashboard?
What is the relationship between eating ice cream and getting attacked by a shark?
The nine chapters in this book are arranged in three parts that address systems concepts in general, tools and techniques, and future trend topics. Systems concepts include contrasting open and closed systems, performing data mining and big data analysis, and gauging data quality. Tools and techniques include analyzing both continuous and discrete data, applying probability basics, and practicing quantitative analysis such as descriptive and inferential statistics. Future trends include leveraging the Internet of Everything, modeling Artificial Intelligence, and establishing a Data Analytics Support Office (DASO).
Many examples are included that were generated using common software, such as Excel, Minitab, Tableau, SAS, and Crystal Ball. While words are good, examples can sometimes be a better teaching tool. For each example included, data files can be found on the companion website. Many of the data sets are tied to the global economy because they use data from shipping ports, air freight hubs, largest cities, and soccer teams. The appendices contain more detailed analysis including the 10 T's for Data Mining, Million Row Data Audit (MRDA) Processes, Analysis of Rainfall, and Simulation Models for Evaluating Traffic Flow.
If you are a student or a professional looking for more technical skills, or if you are simply curious about the most up-to-date data analysis techniques and their powerful applications, then this is definitely the book for you.
Learning all of the required skills to master data science and machine learning could certainly be challenging, but in this book, Jason Callaway has condensed all of the knowledge you need into a clear and beginner-friendly introduction, with practical examples, detailed explanations, and tips and tricks from his experience.
Through his revolutionary and systematic approach, you can learn techniques to manipulate and process datasets, the principles of Python programming, and their real-world applications, regardless of your previous experience.
Here's just a tiny fraction of what you will discover:
What data science is, and why it has become fundamental in hundreds of business and technological applications
The basics of Python programming
Essential Python libraries such as NumPy, Pandas, and Matplotlib
All of the most effective computational methods for data analysis
Data visualization tools and techniques
How to build statistical and machine learning models (even if you are brand new to programming)
The future of Artificial Intelligence
How to build neural networks with Python
Step-by-step exercises, practical examples, and tips and tricks
Are you ready to develop a successful career in the growing industry of data science?
1.Introduction to Industrial Analytics.- 2. Measuring Performance.- 3. Modelling and Simulating Systems.- 4. Optimising Systems.- 5. Production Control and Scheduling.- 6. Simulating Demand Forecasts.- 7. Investigating Time Series Data.- 8. Determining the Minimum Information for Effective Control.- 9. Constructing Machine Learning Models for Prediction.- 10. Exploring Model Accuracy.- 11. Building a Business Case for Sensing Technology Adoption.- 12. Improving Throughput by Utilising Sensor Data.- 13. Constructing a Digital Factory Model to Optimise Production.- 14. Examining a Digital Supply Chain.- 15. Probability Essentials.- 16. Building Simulations with Spreadsheets.- 17. Using Python to Construct Manufacturing Models.- 18. Predictive Analytics with KNIME.- 19. Using R to Evaluate Data.- 20. Example Case Study Data.
Описание: Data science has a huge impact on how companies conduct business, and those who don`t learn about this revolutionaryfield could be left behind. You see, data science will help you make better decisions, know what products and services to release, and how to provide better service to your customers.
Описание: Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner(R), Third Edition presents an applied approach to data mining and predictive analytics with clear exposition, hands-on exercises, and real-life case studies.
Автор: Boris Deliba?i?; Jorge E. Hern?ndez; Jason Papatha Название: Decision Support Systems V – Big Data Analytics for Decision Making ISBN: 3319185322 ISBN-13(EAN): 9783319185323 Издательство: Springer Рейтинг: Цена: 5590.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: 'Big Data' Decision Making Use Cases.- The Roles of Big Data in the Decision-Support Process: An Empirical Investigation.- Cloud Enabled Big Data Business Platform for Logistics Services: A Research and Development Agenda.- Making Sense of Governmental Activities Over Social Media: A Data-Driven Approach.- Data-Mining and Expert Models for Predicting Injury Risk in Ski Resorts.- The Effects of Performance Ratios in Predicting Corporate Bankruptcy: The Italian Case.- A Tangible Collaborative Decision Support System for Various Variants of the Vehicle Routing Problem.- Decision Support Model for Participatory Management of Water Resource.- Modeling Interactions Among Criteria in MCDM Methods: A Review.
Описание: The availability of big data, low-cost commodity hardware, and new information management and analytic software have produced a unique moment in the history of data analysis. The convergence of these trends means that we have the capabilities required to analyze astonishing data sets quickly and cost-effectively for the first time in history. They represent a genuine leap forward and a clear opportunity to realize enormous gains in terms of efficiency, productivity, revenue, and profitability especially in digital marketing. Data plays a huge role in understanding valuable insights about target demographics and customer preferences. From every interaction with technology, regardless of whether it is active or passive, we are creating new data that can describe us. If analyzed correctly, these data points can explain a lot about our behavior, personalities, and life events. Companies can leverage these insights for product improvements, business strategy, and marketing campaigns to cater to the target customers.
Big Data Analytics for Improved Accuracy, Efficiency, and Decision Making in Digital Marketing aids understanding of big data in terms of digital marketing for meaningful analysis of information that can improve marketing efforts and strategies using the latest digital techniques. The chapters cover a wide array of essential marketing topics and techniques, including search engine marketing, consumer behavior, social media marketing, online advertising, and how they interact with big data. This book is essential for professionals and researchers working in the field of analytics, data, and digital marketing, along with marketers, advertisers, brand managers, social media specialists, managers, sales professionals, practitioners, researchers, academicians, and students looking for the latest information on how big data is being used in digital marketing strategies.
Описание: This book offers a clear understanding of the concept of context-aware machine learning including an automated rule-based framework within the broad area of data science and analytics, particularly, with the aim of data-driven intelligent decision making.
Описание: This book provides a technical approach to a Business Resilience System with its Risk Atom and Processing Data Point based on fuzzy logic and cloud computation in real time.
Data Science in Theory and Practice delivers a comprehensive treatment of the mathematical and statistical models useful for analyzing data sets arising in various disciplines, like banking, finance, health care, bioinformatics, security, education, and social services. Written in five parts, the book examines some of the most commonly used and fundamental mathematical and statistical concepts that form the basis of data science. The authors go on to analyze various data transformation techniques useful for extracting information from raw data, long memory behavior, and predictive modeling.
The book offers readers a multitude of topics all relevant to the analysis of complex data sets. Along with a robust exploration of the theory underpinning data science, it contains numerous applications to specific and practical problems. The book also provides examples of code algorithms in R and Python, and provides pseudo-algorithms to port the code to any other language.
Ideal for students and practitioners without a strong background in data science, readers will also learn from topics like:
Analyses of foundational theoretical subjects, including the history of data science, matrix algebra and random vectors, and multivariate analysis
A comprehensive examination of time series forecasting, including the different components of time series and transformations to achieve stationarity
Introductions to both the R and Python programming languages, including basic data types and sample manipulations for both languages
An exploration of algorithms, including how to write one and how to perform an asymptotic analysis
A comprehensive discussion of several techniques for analyzing and predicting complex data sets
Perfect for advanced undergraduate and graduate students in Data Science, Business Analytics, and Statistics programs, Data Science in Theory and Practice will also earn a place in the libraries of practicing data scientists, data and business analysts, and statisticians in the private sector, government, and academia.
Описание: Use Predictive Analytics to Uncover Hidden Patterns and Correlations and Improve Decision-Making Using predictive analytics techniques, decision-makers can uncover hidden patterns and correlations in their data and leverage these insights to improve many key business decisions. In this thoroughly updated guide, Dr. Dursun Delen illuminates state-of-the-art best practices for predictive analytics for both business professionals and students. Delen provides a holistic approach covering key data mining processes and methods, relevant data management techniques, tools and metrics, advanced text and web mining, big data integration, and much more. Balancing theory and practice, Delen presents intuitive conceptual illustrations, realistic example problems, and real-world case studies--including lessons from failed projects. It is all designed to help you gain a practical understanding you can apply for profit. * Leverage knowledge extracted via data mining to make smarter decisions * Use standardized processes and workflows to make more trustworthy predictions * Predict discrete outcomes (via classification), numeric values (via regression), and changes over time (via time-series forecasting) * Understand predictive algorithms drawn from traditional statistics and advanced machine learning * Discover cutting-edge techniques, and explore advanced applications ranging from sentiment analysis to fraud detection
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru