Applying Reinforcement Learning on Real-World Data with Practical Examples in Python, Kajal Singh, Matthew E. Taylor, Philip Osborne
Автор: Lonza, Andrea Название: Reinforcement learning algorithms with python ISBN: 1789131111 ISBN-13(EAN): 9781789131116 Издательство: Неизвестно Рейтинг: Цена: 7171.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: With this book, you will understand the core concepts and techniques of reinforcement learning. You will take a look into each RL algorithm and will develop your own self-learning algorithms and models. You will optimize the algorithms for better precision, use high-speed actions and lower the risk of anomalies in your applications.
Описание: This book introduces reinforcement learning, and provides novel ideas and use cases to demonstrate the benefits of using reinforcement learning for Cyber Physical Systems. Two important case studies on applying reinforcement learning to cybersecurity problems are included.
Автор: Vamvoudakis Kyriakos G., Wan Yan, Lewis Frank L. Название: Handbook of Reinforcement Learning and Control ISBN: 3030609898 ISBN-13(EAN): 9783030609894 Издательство: Springer Цена: 32142.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The Cognitive Dialogue: A New Architecture for Perception and Cognition.- Rooftop-Aware Emergency Landing Planning for Small Unmanned Aircraft Systems.- Quantum Reinforcement Learning in Changing Environment.- The Role of Thermodynamics in the Future Research Directions in Control and Learning.- Mixed Density Reinforcement Learning Methods for Approximate Dynamic Programming.- Analyzing and Mitigating Link-Flooding DoS Attacks Using Stackelberg Games and Adaptive Learning.- Learning and Decision Making for Complex Systems Subjected to Uncertainties: A Stochastic Distribution Control Approach.- Optimal Adaptive Control of Partially Unknown Linear Continuous-time Systems with Input and State Delay.- Gradient Methods Solve the Linear Quadratic Regulator Problem Exponentially Fast.- Architectures, Data Representations and Learning Algorithms: New Directions at the Confluence of Control and Learning.- Reinforcement Learning for Optimal Feedback Control and Multiplayer Games.- Fundamental Principles of Design for Reinforcement Learning Algorithms Course Titles.- Long-Term Impacts of Fair Machine Learning.- Learning-based Model Reduction for Partial Differential Equations with Applications to Thermo-Fluid Models' Identification, State Estimation, and Stabilization.- CESMA: Centralized Expert Supervises Multi-Agents, for Decentralization.- A Unified Framework for Reinforcement Learning and Sequential Decision Analytics.- Trading Utility and Uncertainty: Applying the Value of Information to Resolve the Exploration-Exploitation Dilemma in Reinforcement Learning.- Multi-Agent Reinforcement Learning: Recent Advances, Challenges, and Applications.- Reinforcement Learning Applications, An Industrial Perspective.- A Hybrid Dynamical Systems Perspective of Reinforcement Learning.- Bounded Rationality and Computability Issues in Learning, Perception, Decision-Making, and Games Panagiotis Tsiotras.- Mixed Modality Learning.- Computational Intelligence in Uncertainty Quantification for Learning Control and Games.- Reinforcement Learning Based Optimal Stabilization of Unknown Time Delay Systems Using State and Output Feedback.- Robust Autonomous Driving with Humans in the Loop.- Boundedly Rational Reinforcement Learning for Secure Control.
Автор: Ravichandiran, Sudharsan Название: Hands-on reinforcement learning with python - ISBN: 1839210680 ISBN-13(EAN): 9781839210686 Издательство: Неизвестно Рейтинг: Цена: 9010.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Deep Reinforcement Learning with Python - Second Edition will help you learn reinforcement learning algorithms, techniques and architectures - including deep reinforcement learning - from scratch. This new edition is an extensive update of the original, reflecting the state-of-the-art latest thinking in reinforcement learning.
Описание: This book focuses on expert-level explanations and implementations of scalable reinforcement learning algorithms and approaches. Starting with the fundamentals, the book covers state-of-the-art methods from bandit problems to meta-reinforcement learning. You`ll also explore practical examples inspired by real-life problems from the industry.
Автор: Saito Sean, Wenzhuo Yang, Shanmugamani Rajalingappaa Название: Python Reinforcement Learning Projects ISBN: 1788991613 ISBN-13(EAN): 9781788991612 Издательство: Неизвестно Рейтинг: Цена: 9010.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Python Reinforcement Learning Projects brings various aspects and methodologies of RL using 8 real-world projects that explore RL and will have hands-on experience with real data and artificial intelligence problems. You will learn to build self-learning models using sophisticated techniques like Q-learning, Markov models and Monte-Carlo process.
Описание: This cookbook will help you to gain a solid understanding of deep reinforcement learning (RL) algorithms with the help of concise, easy-to-follow implementations from scratch. You`ll learn how to implement these algorithms with minimal code and develop AI applications to solve real-world and business problems using RL.
Автор: Sugiyama Название: Statistical Reinforcement Learning ISBN: 1439856893 ISBN-13(EAN): 9781439856895 Издательство: Taylor&Francis Рейтинг: Цена: 13014.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Reinforcement learning is a mathematical framework for developing computer agents that can learn an optimal behavior by relating generic reward signals with its past actions. With numerous successful applications in business intelligence, plant control, and gaming, the RL framework is ideal for decision making in unknown environments with large amounts of data.
Supplying an up-to-date and accessible introduction to the field, Statistical Reinforcement Learning: Modern Machine Learning Approaches presents fundamental concepts and practical algorithms of statistical reinforcement learning from the modern machine learning viewpoint. It covers various types of RL approaches, including model-based and model-free approaches, policy iteration, and policy search methods.
Covers the range of reinforcement learning algorithms from a modern perspective
Lays out the associated optimization problems for each reinforcement learning scenario covered
Provides thought-provoking statistical treatment of reinforcement learning algorithms
The book covers approaches recently introduced in the data mining and machine learning fields to provide a systematic bridge between RL and data mining/machine learning researchers. It presents state-of-the-art results, including dimensionality reduction in RL and risk-sensitive RL. Numerous illustrative examples are included to help readers understand the intuition and usefulness of reinforcement learning techniques.
This book is an ideal resource for graduate-level students in computer science and applied statistics programs, as well as researchers and engineers in related fields.
Автор: Meyn, Sean (university Of Florida) Название: Control systems and reinforcement learning ISBN: 1316511960 ISBN-13(EAN): 9781316511961 Издательство: Cambridge Academ Рейтинг: Цена: 7918.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The book is written for newcomers to reinforcement learning who wish to write code for various applications, from robotics to power systems to supply chains. It also contains advanced material designed to prepare graduate students and professionals for both research and application of reinforcement learning and optimal control techniques.
Автор: Da Silva Felipe Leno, Reali Costa Anna Helena Название: Transfer Learning for Multiagent Reinforcement Learning Systems ISBN: 1636391346 ISBN-13(EAN): 9781636391342 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 8039.00 р. Наличие на складе: Нет в наличии.
Описание:
Learning to solve sequential decision-making tasks is difficult. Humans take years exploring the environment essentially in a random way until they are able to reason, solve difficult tasks, and collaborate with other humans towards a common goal. Artificial Intelligent agents are like humans in this aspect. Reinforcement Learning (RL) is a well-known technique to train autonomous agents through interactions with the environment. Unfortunately, the learning process has a high sample complexity to infer an effective actuation policy, especially when multiple agents are simultaneously actuating in the environment.
However, previous knowledge can be leveraged to accelerate learning and enable solving harder tasks. In the same way humans build skills and reuse them by relating different tasks, RL agents might reuse knowledge from previously solved tasks and from the exchange of knowledge with other agents in the environment. In fact, virtually all of the most challenging tasks currently solved by RL rely on embedded knowledge reuse techniques, such as Imitation Learning, Learning from Demonstration, and Curriculum Learning.
This book surveys the literature on knowledge reuse in multiagent RL. The authors define a unifying taxonomy of state-of-the-art solutions for reusing knowledge, providing a comprehensive discussion of recent progress in the area. In this book, readers will find a comprehensive discussion of the many ways in which knowledge can be reused in multiagent sequential decision-making tasks, as well as in which scenarios each of the approaches is more efficient. The authors also provide their view of the current low-hanging fruit developments of the area, as well as the still-open big questions that could result in breakthrough developments. Finally, the book provides resources to researchers who intend to join this area or leverage those techniques, including a list of conferences, journals, and implementation tools.
This book will be useful for a wide audience; and will hopefully promote new dialogues across communities and novel developments in the area.
Автор: Francois-Lavet Vincent, Henderson Peter, Islam Riashat Название: An Introduction to Deep Reinforcement Learning ISBN: 1680835386 ISBN-13(EAN): 9781680835380 Издательство: Неизвестно Рейтинг: Цена: 13656.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Provides a starting point for understanding deep reinforcement learning. Although written at a research level it provides a comprehensive and accessible introduction to deep reinforcement learning models, algorithms and techniques.
Автор: Lanham Micheal Название: Hands-On Reinforcement Learning for Games ISBN: 1839214937 ISBN-13(EAN): 9781839214936 Издательство: Неизвестно Рейтинг: Цена: 8091.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The AI revolution is here and it is embracing games. Game developers are being challenged to enlist cutting edge AI as part of their games. In this book, you will look at the journey of building capable AI using reinforcement learning algorithms and techniques. You will learn to solve complex tasks and build next-generation games using a ...
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru