Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Control systems and reinforcement learning, Meyn, Sean (university Of Florida)


Варианты приобретения
Цена: 7918.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Англия: Есть  Склад Америка: Есть  
При оформлении заказа до: 2025-08-04
Ориентировочная дата поставки: Август-начало Сентября

Добавить в корзину
в Мои желания

Автор: Meyn, Sean (university Of Florida)
Название:  Control systems and reinforcement learning
ISBN: 9781316511961
Издательство: Cambridge Academ
Классификация:





ISBN-10: 1316511960
Обложка/Формат: Hardback
Страницы: 450
Вес: 1.04 кг.
Дата издания: 09.06.2022
Серия: Computing & IT
Язык: English
Издание: New ed
Иллюстрации: Worked examples or exercises; worked examples or exercises
Размер: 22.86 x 15.24 x 2.24 cm
Читательская аудитория: General (us: trade)
Ключевые слова: Algorithms & data structures,Econometrics,Machine learning,Mathematical modelling,Probability & statistics,Stochastics, COMPUTERS / Computer Vision & Pattern Recognition
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание: The book is written for newcomers to reinforcement learning who wish to write code for various applications, from robotics to power systems to supply chains. It also contains advanced material designed to prepare graduate students and professionals for both research and application of reinforcement learning and optimal control techniques.


Deep Reinforcement Learning

Автор: Mohit Sewak
Название: Deep Reinforcement Learning
ISBN: 9811382840 ISBN-13(EAN): 9789811382840
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Поставка под заказ.

Описание: This book starts by presenting the basics of reinforcement learning using highly intuitive and easy-to-understand examples and applications, and then introduces the cutting-edge research advances that make reinforcement learning capable of out-performing most state-of-art systems, and even humans in a number of applications. The book not only equips readers with an understanding of multiple advanced and innovative algorithms, but also prepares them to implement systems such as those created by Google Deep Mind in actual code.This book is intended for readers who want to both understand and apply advanced concepts in a field that combines the best of two worlds – deep learning and reinforcement learning – to tap the potential of ‘advanced artificial intelligence’ for creating real-world applications and game-winning algorithms.

TensorFlow Reinforcement Learning Quick Start Guide

Автор: Balakrishnan Kaushik
Название: TensorFlow Reinforcement Learning Quick Start Guide
ISBN: 1789533589 ISBN-13(EAN): 9781789533583
Издательство: Неизвестно
Рейтинг:
Цена: 4964.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is an essential guide for anyone interested in Reinforcement Learning. The book provides an actionable reference for Reinforcement Learning algorithms and their applications using TensorFlow and Python. It will help readers leverage the power of algorithms such as Deep Q-Network (DQN), Deep Deterministic Policy Gradients (DDPG), and ...

PyTorch 1.0 Reinforcement Learning Cookbook

Автор: Liu Yuxi (Hayden)
Название: PyTorch 1.0 Reinforcement Learning Cookbook
ISBN: 1838551964 ISBN-13(EAN): 9781838551964
Издательство: Неизвестно
Рейтинг:
Цена: 8091.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents practical solutions to the most common reinforcement learning problems. The recipes in this book will help you understand the fundamental concepts to develop popular RL algorithms. You will gain practical experience in the RL domain using the modern offerings of the PyTorch 1.x library.

Reinforcement Learning for Cyber-Physical Systems with Cybersecurity Case Studies

Автор: Li, Chong
Название: Reinforcement Learning for Cyber-Physical Systems with Cybersecurity Case Studies
ISBN: 1138543535 ISBN-13(EAN): 9781138543539
Издательство: Taylor&Francis
Рейтинг:
Цена: 12707.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book introduces reinforcement learning, and provides novel ideas and use cases to demonstrate the benefits of using reinforcement learning for Cyber Physical Systems. Two important case studies on applying reinforcement learning to cybersecurity problems are included.

Handbook of Reinforcement Learning and Control

Автор: Vamvoudakis Kyriakos G., Wan Yan, Lewis Frank L.
Название: Handbook of Reinforcement Learning and Control
ISBN: 3030609898 ISBN-13(EAN): 9783030609894
Издательство: Springer
Цена: 32142.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The Cognitive Dialogue: A New Architecture for Perception and Cognition.- Rooftop-Aware Emergency Landing Planning for Small Unmanned Aircraft Systems.- Quantum Reinforcement Learning in Changing Environment.- The Role of Thermodynamics in the Future Research Directions in Control and Learning.- Mixed Density Reinforcement Learning Methods for Approximate Dynamic Programming.- Analyzing and Mitigating Link-Flooding DoS Attacks Using Stackelberg Games and Adaptive Learning.- Learning and Decision Making for Complex Systems Subjected to Uncertainties: A Stochastic Distribution Control Approach.- Optimal Adaptive Control of Partially Unknown Linear Continuous-time Systems with Input and State Delay.- Gradient Methods Solve the Linear Quadratic Regulator Problem Exponentially Fast.- Architectures, Data Representations and Learning Algorithms: New Directions at the Confluence of Control and Learning.- Reinforcement Learning for Optimal Feedback Control and Multiplayer Games.- Fundamental Principles of Design for Reinforcement Learning Algorithms Course Titles.- Long-Term Impacts of Fair Machine Learning.- Learning-based Model Reduction for Partial Differential Equations with Applications to Thermo-Fluid Models' Identification, State Estimation, and Stabilization.- CESMA: Centralized Expert Supervises Multi-Agents, for Decentralization.- A Unified Framework for Reinforcement Learning and Sequential Decision Analytics.- Trading Utility and Uncertainty: Applying the Value of Information to Resolve the Exploration-Exploitation Dilemma in Reinforcement Learning.- Multi-Agent Reinforcement Learning: Recent Advances, Challenges, and Applications.- Reinforcement Learning Applications, An Industrial Perspective.- A Hybrid Dynamical Systems Perspective of Reinforcement Learning.- Bounded Rationality and Computability Issues in Learning, Perception, Decision-Making, and Games Panagiotis Tsiotras.- Mixed Modality Learning.- Computational Intelligence in Uncertainty Quantification for Learning Control and Games.- Reinforcement Learning Based Optimal Stabilization of Unknown Time Delay Systems Using State and Output Feedback.- Robust Autonomous Driving with Humans in the Loop.- Boundedly Rational Reinforcement Learning for Secure Control.

Reinforcement learning for cyber-physical systems

Автор: Li, Chong Qiu, Meikang
Название: Reinforcement learning for cyber-physical systems
ISBN: 0367656639 ISBN-13(EAN): 9780367656638
Издательство: Taylor&Francis
Рейтинг:
Цена: 6889.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book introduces reinforcement learning, and provides novel ideas and use cases to demonstrate the benefits of using reinforcement learning for Cyber Physical Systems. Two important case studies on applying reinforcement learning to cybersecurity problems are included.

Handbook of Reinforcement Learning and Control

Автор: Vamvoudakis
Название: Handbook of Reinforcement Learning and Control
ISBN: 3030609928 ISBN-13(EAN): 9783030609924
Издательство: Springer
Рейтинг:
Цена: 32142.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This handbook presents state-of-the-art research in reinforcement learning, focusing on its applications in the control and game theory of dynamic systems and future directions for related research and technology. The contributions gathered in this book deal with challenges faced when using learning and adaptation methods to solve academic and industrial problems, such as optimization in dynamic environments with single and multiple agents, convergence and performance analysis, and online implementation. They explore means by which these difficulties can be solved, and cover a wide range of related topics including: * deep learning; * artificial intelligence; * applications of game theory; * mixed modality learning; and * multi-agent reinforcement learning. Practicing engineers and scholars in the field of machine learning, game theory, and autonomous control will find the Handbook of Reinforcement Learning and Control to be thought-provoking, instructive and informative.

Applying Reinforcement Learning on Real-World Data with Practical Examples in Python

Автор: Kajal Singh, Matthew E. Taylor, Philip Osborne
Название: Applying Reinforcement Learning on Real-World Data with Practical Examples in Python
ISBN: 1636393446 ISBN-13(EAN): 9781636393445
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 6791.00 р.
Наличие на складе: Нет в наличии.

Описание: Reinforcement learning is a powerful tool in artificial intelligence in which virtual or physical agents learn to optimize their decision making to achieve long-term goals. This book shows how reinforcement learning can be adopted in different situations, including robot control, stock trading, supply chain optimization, and plant control.

Transfer Learning for Multiagent Reinforcement Learning Systems

Автор: Da Silva Felipe Leno, Reali Costa Anna Helena
Название: Transfer Learning for Multiagent Reinforcement Learning Systems
ISBN: 1636391346 ISBN-13(EAN): 9781636391342
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 8039.00 р.
Наличие на складе: Нет в наличии.

Описание:

Learning to solve sequential decision-making tasks is difficult. Humans take years exploring the environment essentially in a random way until they are able to reason, solve difficult tasks, and collaborate with other humans towards a common goal. Artificial Intelligent agents are like humans in this aspect. Reinforcement Learning (RL) is a well-known technique to train autonomous agents through interactions with the environment. Unfortunately, the learning process has a high sample complexity to infer an effective actuation policy, especially when multiple agents are simultaneously actuating in the environment.

However, previous knowledge can be leveraged to accelerate learning and enable solving harder tasks. In the same way humans build skills and reuse them by relating different tasks, RL agents might reuse knowledge from previously solved tasks and from the exchange of knowledge with other agents in the environment. In fact, virtually all of the most challenging tasks currently solved by RL rely on embedded knowledge reuse techniques, such as Imitation Learning, Learning from Demonstration, and Curriculum Learning.

This book surveys the literature on knowledge reuse in multiagent RL. The authors define a unifying taxonomy of state-of-the-art solutions for reusing knowledge, providing a comprehensive discussion of recent progress in the area. In this book, readers will find a comprehensive discussion of the many ways in which knowledge can be reused in multiagent sequential decision-making tasks, as well as in which scenarios each of the approaches is more efficient. The authors also provide their view of the current low-hanging fruit developments of the area, as well as the still-open big questions that could result in breakthrough developments. Finally, the book provides resources to researchers who intend to join this area or leverage those techniques, including a list of conferences, journals, and implementation tools.

This book will be useful for a wide audience; and will hopefully promote new dialogues across communities and novel developments in the area.

Reinforcement Learning

Автор: Richard S. Sutton
Название: Reinforcement Learning
ISBN: 0792392345 ISBN-13(EAN): 9780792392347
Издательство: Springer
Рейтинг:
Цена: 30606.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Reinforcement learning is the learning of mapping from situations to actions so as to maximize a scalar reward or reinforcement signal. The learner is not told which action to take but instead must discover which actions yield the highest reward. This book contains research data on the subject.

Reinforcement learning algorithms with python

Автор: Lonza, Andrea
Название: Reinforcement learning algorithms with python
ISBN: 1789131111 ISBN-13(EAN): 9781789131116
Издательство: Неизвестно
Рейтинг:
Цена: 7171.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: With this book, you will understand the core concepts and techniques of reinforcement learning. You will take a look into each RL algorithm and will develop your own self-learning algorithms and models. You will optimize the algorithms for better precision, use high-speed actions and lower the risk of anomalies in your applications.

Deep Reinforcement Learning

Автор: Mohit Sewak
Название: Deep Reinforcement Learning
ISBN: 9811382875 ISBN-13(EAN): 9789811382871
Издательство: Springer
Рейтинг:
Цена: 22359.00 р.
Наличие на складе: Поставка под заказ.

Описание: This book starts by presenting the basics of reinforcement learning using highly intuitive and easy-to-understand examples and applications, and then introduces the cutting-edge research advances that make reinforcement learning capable of out-performing most state-of-art systems, and even humans in a number of applications.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия