Control systems and reinforcement learning, Meyn, Sean (university Of Florida)
Автор: Mohit Sewak Название: Deep Reinforcement Learning ISBN: 9811382840 ISBN-13(EAN): 9789811382840 Издательство: Springer Рейтинг: Цена: 18167.00 р. Наличие на складе: Поставка под заказ.
Описание: This book starts by presenting the basics of reinforcement learning using highly intuitive and easy-to-understand examples and applications, and then introduces the cutting-edge research advances that make reinforcement learning capable of out-performing most state-of-art systems, and even humans in a number of applications. The book not only equips readers with an understanding of multiple advanced and innovative algorithms, but also prepares them to implement systems such as those created by Google Deep Mind in actual code.This book is intended for readers who want to both understand and apply advanced concepts in a field that combines the best of two worlds – deep learning and reinforcement learning – to tap the potential of ‘advanced artificial intelligence’ for creating real-world applications and game-winning algorithms.
Автор: Balakrishnan Kaushik Название: TensorFlow Reinforcement Learning Quick Start Guide ISBN: 1789533589 ISBN-13(EAN): 9781789533583 Издательство: Неизвестно Рейтинг: Цена: 4964.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book is an essential guide for anyone interested in Reinforcement Learning. The book provides an actionable reference for Reinforcement Learning algorithms and their applications using TensorFlow and Python. It will help readers leverage the power of algorithms such as Deep Q-Network (DQN), Deep Deterministic Policy Gradients (DDPG), and ...
Автор: Liu Yuxi (Hayden) Название: PyTorch 1.0 Reinforcement Learning Cookbook ISBN: 1838551964 ISBN-13(EAN): 9781838551964 Издательство: Неизвестно Рейтинг: Цена: 8091.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents practical solutions to the most common reinforcement learning problems. The recipes in this book will help you understand the fundamental concepts to develop popular RL algorithms. You will gain practical experience in the RL domain using the modern offerings of the PyTorch 1.x library.
Описание: This book introduces reinforcement learning, and provides novel ideas and use cases to demonstrate the benefits of using reinforcement learning for Cyber Physical Systems. Two important case studies on applying reinforcement learning to cybersecurity problems are included.
Автор: Vamvoudakis Kyriakos G., Wan Yan, Lewis Frank L. Название: Handbook of Reinforcement Learning and Control ISBN: 3030609898 ISBN-13(EAN): 9783030609894 Издательство: Springer Цена: 32142.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The Cognitive Dialogue: A New Architecture for Perception and Cognition.- Rooftop-Aware Emergency Landing Planning for Small Unmanned Aircraft Systems.- Quantum Reinforcement Learning in Changing Environment.- The Role of Thermodynamics in the Future Research Directions in Control and Learning.- Mixed Density Reinforcement Learning Methods for Approximate Dynamic Programming.- Analyzing and Mitigating Link-Flooding DoS Attacks Using Stackelberg Games and Adaptive Learning.- Learning and Decision Making for Complex Systems Subjected to Uncertainties: A Stochastic Distribution Control Approach.- Optimal Adaptive Control of Partially Unknown Linear Continuous-time Systems with Input and State Delay.- Gradient Methods Solve the Linear Quadratic Regulator Problem Exponentially Fast.- Architectures, Data Representations and Learning Algorithms: New Directions at the Confluence of Control and Learning.- Reinforcement Learning for Optimal Feedback Control and Multiplayer Games.- Fundamental Principles of Design for Reinforcement Learning Algorithms Course Titles.- Long-Term Impacts of Fair Machine Learning.- Learning-based Model Reduction for Partial Differential Equations with Applications to Thermo-Fluid Models' Identification, State Estimation, and Stabilization.- CESMA: Centralized Expert Supervises Multi-Agents, for Decentralization.- A Unified Framework for Reinforcement Learning and Sequential Decision Analytics.- Trading Utility and Uncertainty: Applying the Value of Information to Resolve the Exploration-Exploitation Dilemma in Reinforcement Learning.- Multi-Agent Reinforcement Learning: Recent Advances, Challenges, and Applications.- Reinforcement Learning Applications, An Industrial Perspective.- A Hybrid Dynamical Systems Perspective of Reinforcement Learning.- Bounded Rationality and Computability Issues in Learning, Perception, Decision-Making, and Games Panagiotis Tsiotras.- Mixed Modality Learning.- Computational Intelligence in Uncertainty Quantification for Learning Control and Games.- Reinforcement Learning Based Optimal Stabilization of Unknown Time Delay Systems Using State and Output Feedback.- Robust Autonomous Driving with Humans in the Loop.- Boundedly Rational Reinforcement Learning for Secure Control.
Автор: Li, Chong Qiu, Meikang Название: Reinforcement learning for cyber-physical systems ISBN: 0367656639 ISBN-13(EAN): 9780367656638 Издательство: Taylor&Francis Рейтинг: Цена: 6889.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book introduces reinforcement learning, and provides novel ideas and use cases to demonstrate the benefits of using reinforcement learning for Cyber Physical Systems. Two important case studies on applying reinforcement learning to cybersecurity problems are included.
Автор: Vamvoudakis Название: Handbook of Reinforcement Learning and Control ISBN: 3030609928 ISBN-13(EAN): 9783030609924 Издательство: Springer Рейтинг: Цена: 32142.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This handbook presents state-of-the-art research in reinforcement learning, focusing on its applications in the control and game theory of dynamic systems and future directions for related research and technology. The contributions gathered in this book deal with challenges faced when using learning and adaptation methods to solve academic and industrial problems, such as optimization in dynamic environments with single and multiple agents, convergence and performance analysis, and online implementation. They explore means by which these difficulties can be solved, and cover a wide range of related topics including: * deep learning; * artificial intelligence; * applications of game theory; * mixed modality learning; and * multi-agent reinforcement learning. Practicing engineers and scholars in the field of machine learning, game theory, and autonomous control will find the Handbook of Reinforcement Learning and Control to be thought-provoking, instructive and informative.
Описание: Reinforcement learning is a powerful tool in artificial intelligence in which virtual or physical agents learn to optimize their decision making to achieve long-term goals. This book shows how reinforcement learning can be adopted in different situations, including robot control, stock trading, supply chain optimization, and plant control.
Автор: Da Silva Felipe Leno, Reali Costa Anna Helena Название: Transfer Learning for Multiagent Reinforcement Learning Systems ISBN: 1636391346 ISBN-13(EAN): 9781636391342 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 8039.00 р. Наличие на складе: Нет в наличии.
Описание:
Learning to solve sequential decision-making tasks is difficult. Humans take years exploring the environment essentially in a random way until they are able to reason, solve difficult tasks, and collaborate with other humans towards a common goal. Artificial Intelligent agents are like humans in this aspect. Reinforcement Learning (RL) is a well-known technique to train autonomous agents through interactions with the environment. Unfortunately, the learning process has a high sample complexity to infer an effective actuation policy, especially when multiple agents are simultaneously actuating in the environment.
However, previous knowledge can be leveraged to accelerate learning and enable solving harder tasks. In the same way humans build skills and reuse them by relating different tasks, RL agents might reuse knowledge from previously solved tasks and from the exchange of knowledge with other agents in the environment. In fact, virtually all of the most challenging tasks currently solved by RL rely on embedded knowledge reuse techniques, such as Imitation Learning, Learning from Demonstration, and Curriculum Learning.
This book surveys the literature on knowledge reuse in multiagent RL. The authors define a unifying taxonomy of state-of-the-art solutions for reusing knowledge, providing a comprehensive discussion of recent progress in the area. In this book, readers will find a comprehensive discussion of the many ways in which knowledge can be reused in multiagent sequential decision-making tasks, as well as in which scenarios each of the approaches is more efficient. The authors also provide their view of the current low-hanging fruit developments of the area, as well as the still-open big questions that could result in breakthrough developments. Finally, the book provides resources to researchers who intend to join this area or leverage those techniques, including a list of conferences, journals, and implementation tools.
This book will be useful for a wide audience; and will hopefully promote new dialogues across communities and novel developments in the area.
Автор: Richard S. Sutton Название: Reinforcement Learning ISBN: 0792392345 ISBN-13(EAN): 9780792392347 Издательство: Springer Рейтинг: Цена: 30606.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Reinforcement learning is the learning of mapping from situations to actions so as to maximize a scalar reward or reinforcement signal. The learner is not told which action to take but instead must discover which actions yield the highest reward. This book contains research data on the subject.
Автор: Lonza, Andrea Название: Reinforcement learning algorithms with python ISBN: 1789131111 ISBN-13(EAN): 9781789131116 Издательство: Неизвестно Рейтинг: Цена: 7171.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: With this book, you will understand the core concepts and techniques of reinforcement learning. You will take a look into each RL algorithm and will develop your own self-learning algorithms and models. You will optimize the algorithms for better precision, use high-speed actions and lower the risk of anomalies in your applications.
Автор: Mohit Sewak Название: Deep Reinforcement Learning ISBN: 9811382875 ISBN-13(EAN): 9789811382871 Издательство: Springer Рейтинг: Цена: 22359.00 р. Наличие на складе: Поставка под заказ.
Описание: This book starts by presenting the basics of reinforcement learning using highly intuitive and easy-to-understand examples and applications, and then introduces the cutting-edge research advances that make reinforcement learning capable of out-performing most state-of-art systems, and even humans in a number of applications.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru