Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Machine Learning for Engineers, Osvaldo Simeone


Варианты приобретения
Цена: 9029.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-08-04
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Osvaldo Simeone
Название:  Machine Learning for Engineers
ISBN: 9781316512821
Издательство: Cambridge Academ
Классификация:




ISBN-10: 1316512827
Обложка/Формат: Hardback
Страницы: 450
Вес: 1.48 кг.
Дата издания: 03.11.2022
Серия: Physics
Язык: English
Издание: New ed
Иллюстрации: Worked examples or exercises; worked examples or exercises
Размер: 23.62 x 16.00 x 3.05 cm
Читательская аудитория: General (us: trade)
Ключевые слова: Communications engineering / telecommunications,Information theory,Machine learning,Pattern recognition,Signal processing, TECHNOLOGY & ENGINEERING / Signals & Signal
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание: Designed with engineers in mind, this self-contained book will equip students with everything they need to apply machine learning principles to real-world engineering problems. With reproducible examples using Matlab, and lecture slides and solutions for instructors, this is the ideal introduction for engineering students of all disciplines.


Linear Algebra and Learning from Data

Автор: Strang Gilbert
Название: Linear Algebra and Learning from Data
ISBN: 0692196382 ISBN-13(EAN): 9780692196380
Издательство: Cambridge Academ
Рейтинг:
Цена: 9978.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Linear algebra and the foundations of deep learning, together at last! From Professor Gilbert Strang, acclaimed author of Introduction to Linear Algebra, comes Linear Algebra and Learning from Data, the first textbook that teaches linear algebra together with deep learning and neural nets. This readable yet rigorous textbook contains a complete course in the linear algebra and related mathematics that students need to know to get to grips with learning from data. Included are: the four fundamental subspaces, singular value decompositions, special matrices, large matrix computation techniques, compressed sensing, probability and statistics, optimization, the architecture of neural nets, stochastic gradient descent and backpropagation.

Pattern Recognition and Machine Learning

Автор: Christopher M. Bishop
Название: Pattern Recognition and Machine Learning
ISBN: 1493938436 ISBN-13(EAN): 9781493938438
Издательство: Springer
Рейтинг:
Цена: 10480.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Mathematics for Machine Learning

Автор: Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong
Название: Mathematics for Machine Learning
ISBN: 110845514X ISBN-13(EAN): 9781108455145
Издательство: Cambridge Academ
Рейтинг:
Цена: 6334.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This self-contained textbook introduces all the relevant mathematical concepts needed to understand and use machine learning methods, with a minimum of prerequisites. Topics include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics.

Mathematics for Machine Learning

Автор: Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong
Название: Mathematics for Machine Learning
ISBN: 1108470041 ISBN-13(EAN): 9781108470049
Издательство: Cambridge Academ
Рейтинг:
Цена: 13306.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This self-contained textbook introduces all the relevant mathematical concepts needed to understand and use machine learning methods, with a minimum of prerequisites. Topics include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics.

Machine Learning for Engineers: Using Data to Solve Problems for Physical Systems

Автор: McClarren Ryan G.
Название: Machine Learning for Engineers: Using Data to Solve Problems for Physical Systems
ISBN: 3030703878 ISBN-13(EAN): 9783030703875
Издательство: Springer
Рейтинг:
Цена: 7685.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: All engineers and applied scientists will need to harness the power of machine learning to solve the highly complex and data intensive problems now emerging.

An Introduction to Quantum Machine Learning for Engineers

Автор: Osvaldo Simeone
Название: An Introduction to Quantum Machine Learning for Engineers
ISBN: 1638280584 ISBN-13(EAN): 9781638280583
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 14830.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This monograph is motivated by a number of recent developments that appear to define a possible new role for researchers with an engineering profile. Software that make programming quantum algorithms more accessible. A new framework is emerging for programming quantum algorithms to be run on current quantum hardware.

Optimization for data analysis

Автор: Wright, Stephen J. (university Of Wisconsin, Madison) Recht, Benjamin (university Of California, Berkeley)
Название: Optimization for data analysis
ISBN: 1316518981 ISBN-13(EAN): 9781316518984
Издательство: Cambridge Academ
Рейтинг:
Цена: 6018.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Optimization techniques are at the core of data science. An understanding of the basic techniques and their fundamental properties provides important grounding for students, researchers, and practitioners. This compact, self-contained text covers the fundamentals of optimization algorithms, focusing on the techniques most relevant to data science.

Machine Learning for Subsurface Characterization

Автор: Misra, Siddharth
Название: Machine Learning for Subsurface Characterization
ISBN: 0128177365 ISBN-13(EAN): 9780128177365
Издательство: Elsevier Science
Рейтинг:
Цена: 18528.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

To continue to meet demand while keeping costs down, petroleum and reservoir engineers know it is critical to utilize their asset's data through more complex modeling methods, and machine learning and data analytics is the known alternative approach to accurately represent the complexity of fluid-filled rocks. With a lack of training resources available, Machine Learning for Subsurface Characterization focuses on the development and application of neural networks, deep learning, unsupervised learning, reinforcement learning, and clustering methods for subsurface characterization under constraints. Such constraints are encountered during subsurface engineering operations due to financial, operational, regulatory, risk, technological, and environmental challenges.

This reference teaches how to do more with less. Used to develop tools and techniques of data-driven predictive modelling and machine learning for subsurface engineering and science, engineers will be introduced to methods of generating subsurface signals and analyzing the complex relationships within various subsurface signals using machine learning. Algorithmic procedures in MATLAB, R, PYTHON, and TENSORFLOW are displayed in text and through online instructional video to assist training and learning. Field cases are also presented to understand real-world applications, with a particular focus on examples involving shale reservoirs.

Explaining the concept of machine learning, advantages to the industry, and applications applied to complex subsurface rocks, Machine Learning for Subsurface Characterization delivers a missing piece to the reservoir engineer's toolbox needed to support today's complex operations.

  • Focus on applying predictive modelling and machine learning from real case studies and Q&A sessions at the end of each chapter
  • Learn how to develop codes such as MATLAB, PYTHON, R, and TENSORFLOW with step-by-step guides included
  • Visually learn code development with video demonstrations included
Electronics And Communications For Scientists And Engineers

Автор: Plonus, Martin
Название: Electronics And Communications For Scientists And Engineers
ISBN: 0128170085 ISBN-13(EAN): 9780128170083
Издательство: Elsevier Science
Рейтинг:
Цена: 13304.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Electronics and Communications for Scientists and Engineers, Second Edition, offers a valuable and unique overview on the basics of electronic technology and the internet. Class-tested over many years with students at Northwestern University, this useful text covers the essential electronics and communications topics for students and practitioners in engineering, physics, chemistry, and other applied sciences. It describes the electronic underpinnings of the World Wide Web and explains the basics of digital technology, including computing and communications, circuits, analog and digital electronics, as well as special topics such as operational amplifiers, data compression, ultra high definition TV, artificial intelligence, and quantum computers.

Introduction to Applied Linear Algebra

Автор: Boyd Stephen
Название: Introduction to Applied Linear Algebra
ISBN: 1316518965 ISBN-13(EAN): 9781316518960
Издательство: Cambridge Academ
Рейтинг:
Цена: 6811.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A groundbreaking introductory textbook covering the linear algebra methods needed for data science and engineering applications. It combines straightforward explanations with numerous practical examples and exercises from data science, machine learning and artificial intelligence, signal and image processing, navigation, control, and finance.

Digital Signal Processing: A Practical Guide for Engineers and Sc

Автор: Steven Smith
Название: Digital Signal Processing: A Practical Guide for Engineers and Sc
ISBN: 075067444X ISBN-13(EAN): 9780750674447
Издательство: Elsevier Science
Рейтинг:
Цена: 13136.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In addition to its thorough coverage of DSP design and programming techniques, Smith also covers the operation and usage of DSP chips. He uses Analog Devices' popular DSP chip family as design examples. Also included on the companion website is technical info on DSP processors from the four major manufacturers (Analog Devices, Texas Instruments, Motorola, and Lucent) and other DSP software.
*Covers all major DSP topics
*Full of insider information and shortcuts
*Basic techniques and algorithms explained without complex numbers

Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems

Автор: Geron Aurelien
Название: Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems
ISBN: 1492032646 ISBN-13(EAN): 9781492032649
Издательство: Wiley
Рейтинг:
Цена: 9502.00 р.
Наличие на складе: Поставка под заказ.

Описание:

Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data.

The updated edition of this practical book uses concrete examples, minimal theory, and three production-ready Python frameworks--scikit-learn, Keras, and TensorFlow--to help you gain an intuitive understanding of the concepts and tools for building intelligent systems. You'll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you've learned, all you need is programming experience to get started.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия