Автор: Alex Foulkes, Sara Ogilvie Название: Rules for Vampires ISBN: 147119955X ISBN-13(EAN): 9781471199554 Издательство: Simon&Schuster UK Рейтинг: Цена: 1318.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Straighten your cape and sharpen your claws . . . being a vampire is harder than it looks! The deliciously funny debut from Alex Foulkes, illustrated by Sara Ogilvie.
Описание: iMIMIC 2020.- Assessing attribution maps for explaining CNN-based vertebral fracture classifiers.- Projective Latent Interventions for Understanding and Fine-tuning Classifiers.- Interpretable CNN Pruning for Preserving Scale-Covariant Features in Medical Imaging.- Improving the Performance and Explainability of Mammogram Classifiers with Local Annotations.- Improving Interpretability for Computer-aided Diagnosis tools on Whole Slide Imaging with Multiple Instance Learning and Gradient-based Explanations.- Explainable Disease Classification via weakly-supervised segmentation.- Reliable Saliency Maps for Weakly-Supervised Localization of Disease Patterns.- Explainability for regression CNN in fetal head circumference estimation from ultrasound images.- MIL3ID 2020.- Recovering the Imperfect: Cell Segmentation in the Presence of Dynamically Localized Proteins.- Semi-supervised Instance Segmentation with a Learned Shape Prior.- COMe-SEE: Cross-Modality Semantic Embedding Ensemble for Generalized Zero-Shot Diagnosis of Chest Radiographs.- Semi-supervised Machine Learning with MixMatch and Equivalence Classes.- Non-contrast CT Liver Segmentation using CycleGAN Data Augmentation from Contrast Enhanced CT.- Uncertainty Estimation in Medical Image Localization: Towards Robust Anterior Thalamus Targeting for Deep Brain Stimulation.- A Case Study of Transfer of Lesion-Knowledge.- Transfer Learning With Joint Optimization for Label-Efficient Medical Image Anomaly Detection.- Unsupervised Wasserstein Distance Guided Domain Adaptation for 3D Multi-Domain Liver Segmentation.- HydraMix-Net: A Deep Multi-task Semi-supervised Learning Approach for Cell Detection and Classification.- Semi-supervised classification of chest radiographs.- LABELS 2020.- Risk of training diagnostic algorithms on data with demographic bias.- Semi-Weakly Supervised Learning for Prostate Cancer Image Classification with Teacher-Student Deep Convolutional Networks.- Are pathologist-defined labels reproducible? Comparison of the TUPAC16 mitotic figure dataset with an alternative set of labels.- EasierPath: An Open-source Tool for Human-in-the-loop Deep Learning of Renal Pathology.- Imbalance-Effective Active Learning in Nucleus, Lymphocyte and Plasma Cell Detection.- Labeling of Multilingual Breast MRI Reports.- Predicting Scores of Medical Imaging Segmentation Methods with Meta-Learning.- Labelling imaging datasets on the basis of neuroradiology reports: a validation study.- Semi-Supervised Learning for Instrument Detection with a Class Imbalanced Dataset.- Paying Per-label Attention for Multi-label Extraction from Radiology Reports.
Автор: Baatz, Yvonne Название: The Rotterdam Rules ISBN: 1843118246 ISBN-13(EAN): 9781843118244 Издательство: Taylor&Francis Рейтинг: Цена: 76560.00 р. Наличие на складе: Поставка под заказ.
Автор: Juliana Freire; David Koop Название: Provenance and Annotation of Data and Processes ISBN: 3540899642 ISBN-13(EAN): 9783540899648 Издательство: Springer Рейтинг: Цена: 9781.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Constitutes the refereed post-conference proceedings of the Second International Provenance and Annotation Workshop, IPAW 2008, held in Salt Lake City, UT, USA, in June 2007. The papers are organized in topical sections on provenance such as: models and querying; provenance: visualization, failures, identity; and provenance and workflows.
Автор: Paun Название: Statistical Methods for Annotation Analysis ISBN: 3031037537 ISBN-13(EAN): 9783031037535 Издательство: Springer Рейтинг: Цена: 9083.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The focus of this book is primarily on Natural Language Processing, the area of AI devoted to the development of models of language interpretation and production, but many if not most of the methods discussed here are also applicable to other areas of AI, or indeed, to other areas of Data Science.