Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Inference and Learning from Data: Volume 2: Inference, Ali H. Sayed


Варианты приобретения
Цена: 12355.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Англия: Есть  Склад Америка: Есть  
При оформлении заказа до: 2025-11-03
Ориентировочная дата поставки: Декабрь

Добавить в корзину
в Мои желания

Автор: Ali H. Sayed
Название:  Inference and Learning from Data: Volume 2: Inference
ISBN: 9781009218269
Издательство: Cambridge Academ
Классификация:




ISBN-10: 1009218263
Обложка/Формат: Hardback
Страницы: 1070
Вес: 1.87 кг.
Дата издания: 22.12.2022
Серия: Physics
Язык: English
Издание: New ed
Иллюстрации: Worked examples or exercises
Размер: 147 x 252 x 43
Читательская аудитория: General (us: trade)
Ключевые слова: Communications engineering / telecommunications,Information theory,Machine learning,Pattern recognition,Signal processing, TECHNOLOGY & ENGINEERING / Signals & Signal
Подзаголовок: Inference
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание: Written in an engaging and rigorous style by a world authority in the field, this is an accessible and comprehensive introduction to techniques for inferring unknown variables and quantities. With downloadable Matlab code and solutions for instructors, this is the ideal introduction for students of data science, machine learning and engineering.


Computer Age Statistical Inference, Student Edition

Автор: Bradley Efron , Trevor Hastie
Название: Computer Age Statistical Inference, Student Edition
ISBN: 1108823416 ISBN-13(EAN): 9781108823418
Издательство: Cambridge Academ
Рейтинг:
Цена: 5069.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Computing power has revolutionized the theory and practice of statistical inference. Now in paperback, and fortified with 130 class-tested exercises, this book explains modern statistical thinking from classical theories to state-of-the-art prediction algorithms. Anyone who applies statistical methods to data will value this landmark text.

Probabilistic Reasoning in Intelligent Systems,

Автор: Judea Pearl
Название: Probabilistic Reasoning in Intelligent Systems,
ISBN: 1558604790 ISBN-13(EAN): 9781558604797
Издательство: Elsevier Science
Рейтинг:
Цена: 9599.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Probabilistic Reasoning in Intelligent Systems is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic.

The author distinguishes syntactic and semantic approaches to uncertainty--and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition--in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information.


Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.

Empirical Inference

Автор: Bernhard Sch?lkopf; Zhiyuan Luo; Vladimir Vovk
Название: Empirical Inference
ISBN: 3642411355 ISBN-13(EAN): 9783642411359
Издательство: Springer
Рейтинг:
Цена: 13275.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book celebrates the work of Vladimir Vapnik, developer of the support vector machine, which combines methods from statistical learning and functional analysis to create a new approach to learning problems, and who continues as active as ever in his field.

Hardware-Aware Probabilistic Machine Learning Models

Автор: Galindez Olascoaga
Название: Hardware-Aware Probabilistic Machine Learning Models
ISBN: 3030740447 ISBN-13(EAN): 9783030740443
Издательство: Springer
Рейтинг:
Цена: 8384.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book proposes probabilistic machine learning models that represent the hardware properties of the device hosting them.

Hardware-Aware Probabilistic Machine Learning Models: Learning, Inference and Use Cases

Автор: Galindez Olascoaga Laura Isabel, Meert Wannes, Verhelst Marian
Название: Hardware-Aware Probabilistic Machine Learning Models: Learning, Inference and Use Cases
ISBN: 3030740412 ISBN-13(EAN): 9783030740412
Издательство: Springer
Цена: 8384.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book proposes probabilistic machine learning models that represent the hardware properties of the device hosting them.

Foundations of Probabilistic Logic Programming: Languages, Semantics, Inference and Learning

Автор: Riguzzi Fabrizio
Название: Foundations of Probabilistic Logic Programming: Languages, Semantics, Inference and Learning
ISBN: 8770220182 ISBN-13(EAN): 9788770220187
Издательство: Taylor&Francis
Рейтинг:
Цена: 14086.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The integration of logic and probability combines the capability of the first to represent complex relations among entities with the capability of the latter to model uncertainty over attributes and relations. Logic programming provides a Turing complete language based on logic and thus represent an excellent candidate for the integration.Since its birth, the field of Probabilistic Logic Programming has seen a steady increase of activity, with many proposals for languages and algorithms for inference and learning. One of most successful approaches to Probabilistic Logic Programming is the Distribution Semantics, where a probabilistic logic program defines a probability distribution over normal logic programs and the probability of a ground query is then obtained from the joint distribution of the query and the programs. Foundations of Probabilistic Logic Programming aims at providing an overview of the field of Probabilistic Logic Programming, with a special emphasis on languages under the Distribution Semantics. The book presents the main ideas for semantics, inference and learning and highlights connections between the methods.Many examples of the book include a link to a page of the web application http://cplint.eu where the code can be run online.

Grammatical Inference

Автор: Vasant Honavar; Giora Slutzki
Название: Grammatical Inference
ISBN: 3540647767 ISBN-13(EAN): 9783540647768
Издательство: Springer
Рейтинг:
Цена: 9781.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A collection of 23 papers from a colloquium on grammatical inference. They address: automata induction; grammar induction; automatic language acquisition; and applications in areas such as syntactic pattern recognition, adaptive intelligent agents, diagnosis, computational biology and data mining.

Elements of Causal Inference: Foundations and Learning Algorithms

Автор: Peters Jonas, Janzing Dominik, Scholkopf Bernhard
Название: Elements of Causal Inference: Foundations and Learning Algorithms
ISBN: 0262037319 ISBN-13(EAN): 9780262037310
Издательство: MIT Press
Рейтинг:
Цена: 7719.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning.

The mathematization of causality is a relatively recent development, and has become increasingly important in data science and machine learning. This book offers a self-contained and concise introduction to causal models and how to learn them from data.

After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems. All of these topics are discussed first in terms of two variables and then in the more general multivariate case. The bivariate case turns out to be a particularly hard problem for causal learning because there are no conditional independences as used by classical methods for solving multivariate cases. The authors consider analyzing statistical asymmetries between cause and effect to be highly instructive, and they report on their decade of intensive research into this problem.

The book is accessible to readers with a background in machine learning or statistics, and can be used in graduate courses or as a reference for researchers. The text includes code snippets that can be copied and pasted, exercises, and an appendix with a summary of the most important technical concepts.

Computational Inference and Control of Quality in Multimedia Services

Автор: Vlado Menkovski
Название: Computational Inference and Control of Quality in Multimedia Services
ISBN: 3319366394 ISBN-13(EAN): 9783319366395
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This thesis focuses on the problem of optimizing the quality of network multimedia services.

Grammatical Inference: Algorithms, Routines and Applications

Автор: Wieczorek Wojciech
Название: Grammatical Inference: Algorithms, Routines and Applications
ISBN: 3319835890 ISBN-13(EAN): 9783319835891
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book focuses on grammatical inference, presenting classic and modern methods of grammatical inference from the perspective of practitioners.

Polynomial Methods in Statistical Inference: Theory and Practice

Автор: Pengkun Yang, Yihong Wu
Название: Polynomial Methods in Statistical Inference: Theory and Practice
ISBN: 1680837303 ISBN-13(EAN): 9781680837308
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 12197.00 р.
Наличие на складе: Нет в наличии.

Описание: The authors of this monograph survey a suite of techniques based on the theory of polynomials, collectively referred to as polynomial methods. These techniques provide useful tools for the design of highly practical algorithms with provable optimality, and for establishing the fundamental limits of inference problems through moment matching.

Secure Networked Inference with Unreliable Data Sources

Автор: Aditya Vempaty; Bhavya Kailkhura; Pramod K. Varshn
Название: Secure Networked Inference with Unreliable Data Sources
ISBN: 9811347654 ISBN-13(EAN): 9789811347658
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The book presents theory and algorithms for secure networked inference in the presence of Byzantines. It derives fundamental limits of networked inference in the presence of Byzantine data and designs robust strategies to ensure reliable performance for several practical network architectures. In particular, it addresses inference (or learning) processes such as detection, estimation or classification, and parallel, hierarchical, and fully decentralized (peer-to-peer) system architectures. Furthermore, it discusses a number of new directions and heuristics to tackle the problem of design complexity in these practical network architectures for inference.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия