Machine Learning and Data Analytics for Solving Business Problems, Alyoubi
Автор: Goodfellow Ian, Bengio Yoshua, Courville Aaron Название: Deep Learning ISBN: 0262035618 ISBN-13(EAN): 9780262035613 Издательство: MIT Press Рейтинг: Цена: 13543.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives.
"Written by three experts in the field, Deep Learning is the only comprehensive book on the subject." -- Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX
Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.
The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.
Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Автор: Paczkowski Walter R. Название: Business Analytics: Data Science for Business Problems ISBN: 3030870227 ISBN-13(EAN): 9783030870225 Издательство: Springer Рейтинг: Цена: 11878.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book focuses on three core knowledge requirements for effective and thorough data analysis for solving business problems. This volume will be useful to business data analysts, data scientists, and market research professionals, as well as aspiring practitioners in business data analytics.
Автор: Hodeghatta Название: Practical Business Analytics Using R and Python ISBN: 1484287533 ISBN-13(EAN): 9781484287538 Издательство: Springer Рейтинг: Цена: 8384.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book illustrates how data can be useful in solving business problems. It explores various analytics techniques for using data to discover hidden patterns and relationships, predict future outcomes, optimize efficiency and improve the performance of organizations. You’ll learn how to analyze data by applying concepts of statistics, probability theory, and linear algebra. In this new edition, both R and Python are used to demonstrate these analyses. Practical Business Analytics Using R and Python also features new chapters covering databases, SQL, Neural networks, Text Analytics, and Natural Language Processing. Part one begins with an introduction to analytics, the foundations required to perform data analytics, and explains different analytics terms and concepts such as databases and SQL, basic statistics, probability theory, and data exploration. Part two introduces predictive models using statistical machine learning and discusses concepts like regression, classification, and neural networks. Part three covers two of the most popular unsupervised learning techniques, clustering and association mining, as well as text mining and natural language processing (NLP). The book concludes with an overview of big data analytics, R and Python essentials for analytics including libraries such as pandas and NumPy. Upon completing this book, you will understand how to improve business outcomes by leveraging R and Python for data analytics. What You Will Learn * Master the mathematical foundations required for business analytics * Understand various analytics models and data mining techniques such as regression, supervised machine learning algorithms for modeling, unsupervised modeling techniques, and how to choose the correct algorithm for analysis in any given task * Use R and Python to develop descriptive models, predictive models, and optimize models * Interpret and recommend actions based on analytical model outcomes Who This Book Is For Software professionals and developers, managers, and executives who want to understand and learn the fundamentals of analytics using R and Python.
Описание: Data science revolves around two giants, which are big data analytics and deep learning. It is becoming challenging to handle and retrieve useful information due to how fast data is expanding. This book presents the technologies and tools to simplify and streamline the formation of big data along with deep learning systems.
Автор: Kalita Название: Recent Developments in Machine Learning and Data Analytics ISBN: 9811312796 ISBN-13(EAN): 9789811312793 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents high-quality papers from an international forum for research on computational approaches to learning. Further, it features work that shows how to apply learning methods to solve important application problems as well as how machine learning research is conducted.
Автор: Ulf Brefeld; Jesse Davis; Jan Van Haaren; Albrecht Название: Machine Learning and Data Mining for Sports Analytics ISBN: 3030172732 ISBN-13(EAN): 9783030172732 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the refereed post-conference proceedings of the 5th International Workshop on Machine Learning and Data Mining for Sports Analytics, MLSA 2018, colocated with ECML/PKDD 2018, in Dublin, Ireland, in September 2018.
The 12 full papers presented together with 4 challenge papers were carefully reviewed and selected from 24 submissions. The papers present a variety of topics, covering the team sports American football, basketball, ice hockey, and soccer, as well as the individual sports cycling and martial arts. In addition, four challenge papers are included, reporting on how to predict pass receivers in soccer.
Автор: V. Sathiyamoorthi, Atilla Elci Название: Challenges and Applications of Data Analytics in Social Perspectives ISBN: 1799825671 ISBN-13(EAN): 9781799825678 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 29522.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Provides innovative insights into the prevailing challenges in data analytics and its application on social media and focuses on various machine learning and deep learning techniques in improving practice and research. The publication examines topics that include collaborative filtering, data visualization, and edge computing.
Автор: J. Joshua Thomas, Pinar Karagoz, B. Bazeer Ahamed, Название: Deep Learning Techniques and Optimization Strategies in Big Data Analytics ISBN: 1799811921 ISBN-13(EAN): 9781799811923 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 35897.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Many approaches have sprouted from artificial intelligence (AI) and produced major breakthroughs in the computer science and engineering industries. Deep learning is a method that is transforming the world of data and analytics. Optimization of this new approach is still unclear, however, and there's a need for research on the various applications and techniques of deep learning in the field of computing. Deep Learning Techniques and Optimization Strategies in Big Data Analytics is a collection of innovative research on the methods and applications of deep learning strategies in the fields of computer science and information systems. While highlighting topics including data integration, computational modeling, and scheduling systems, this book is ideally designed for engineers, IT specialists, data analysts, data scientists, engineers, researchers, academicians, and students seeking current research on deep learning methods and its application in the digital industry.
Автор: J. Joshua Thomas, Pinar Karagoz, B. Bazeer Ahamed, Pandian Vasant Название: Deep Learning Techniques and Optimization Strategies in Big Data Analytics ISBN: 179981193X ISBN-13(EAN): 9781799811930 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 27027.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Many approaches have sprouted from artificial intelligence (AI) and produced major breakthroughs in the computer science and engineering industries. Deep learning is a method that is transforming the world of data and analytics. Optimization of this new approach is still unclear, however, and there's a need for research on the various applications and techniques of deep learning in the field of computing. Deep Learning Techniques and Optimization Strategies in Big Data Analytics is a collection of innovative research on the methods and applications of deep learning strategies in the fields of computer science and information systems. While highlighting topics including data integration, computational modeling, and scheduling systems, this book is ideally designed for engineers, IT specialists, data analysts, data scientists, engineers, researchers, academicians, and students seeking current research on deep learning methods and its application in the digital industry.
Автор: O`Neil Bonnie K., Fryman Lowell Название: The Data Catalog: Sherlock Holmes Data Sleuthing for Analytics ISBN: 1634627873 ISBN-13(EAN): 9781634627870 Издательство: Gazelle Book Services Рейтинг: Цена: 8578.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Apply this definitive guide to data catalogs and select the feature set needed to empower your data citizens in their quest for faster time to insight. The data catalog may be the most important breakthrough in data management in the last decade, ranking alongside the advent of the data warehouse. The latter enabled business consumers to conduct their own analyses to obtain insights themselves. The data catalog is the next wave of this, empowering business users even further to drastically reduce time to insight, despite the rising tide of data flooding the enterprise. Use this book as a guide to provide a broad overview of the most popular Machine Learning (ML) data catalog products, and perform due diligence using the extensive features list. Consider graphical user interface (GUI) design issues such as layout and navigation, as well as scalability in terms of how the catalog will handle your current and anticipated data and metadata needs. ONeil & Frymanpresent a typology which ranges from products that focus on data lineage, curation and search, data governance, data preparation, and of course, the core capability of finding and understanding the data. The authors emphasize that machine learning is being adopted in many of these products, enabling a more elegant data democratization solution in the face of the burgeoning mountain of data that is engulfing organizations. Derek Strauss, Chairman/CEO, Gavroshe, and Former CDO, TD Ameritrade. This book is organized into three sections: Chapters 1 and 2 reveal the rationale for a data catalog and share how data scientists, data administrators, and curators fare with and without a data catalog; Chapters 3-10 present the many different types of data catalogs; Chapters 11 and 12 provide an extensive features list, current trends, and visions for the future.
Автор: Satpathy Rabinarayan, Choudhury Tanupriya, Satpathy Suneeta Название: Data Analytics in Bioinformatics: A Machine Learning Perspective ISBN: 1119785537 ISBN-13(EAN): 9781119785538 Издательство: Wiley Рейтинг: Цена: 28979.00 р. Наличие на складе: Поставка под заказ.
Описание: Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel machine learning computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics approximating classification and prediction of disease, feature selection, dimensionality reduction, gene selection and classification of microarray data and many more.
Автор: Stankovic Ljubisa, Mandic Danilo, Dakovic Milos Название: Data Analytics on Graphs ISBN: 1680839829 ISBN-13(EAN): 9781680839821 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 21067.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Provides a comprehensive introduction to generating advanced data analytics on graphs that allows us to move beyond the standard regular sampling in time and space to facilitate modelling in many important areas.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru