Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Generative Adversarial Networks and Deep Learning Theory and Applications, Edited By Roshani Raut, Pranav D Pathak, Sachin R


Варианты приобретения
Цена: 22968.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Edited By Roshani Raut, Pranav D Pathak, Sachin R   (Рошани Раут)
Название:  Generative Adversarial Networks and Deep Learning Theory and Applications
Перевод названия: Рошани Раут: Генеративно-состязательные сети, теория и приложения глубокого обучения
ISBN: 9781032068107
Издательство: Taylor&Francis
Классификация:











ISBN-10: 1032068108
Обложка/Формат: Hardback
Страницы: 208
Вес: 0.57 кг.
Дата издания: 10.04.2023
Иллюстрации: 12 tables, black and white; 62 line drawings, black and white; 44 halftones, black and white; 106 illustrations, black and white
Размер: 184 x 262 x 18
Читательская аудитория: Tertiary education (us: college)
Подзаголовок: Theory and applications
Рейтинг:
Поставляется из: Европейский союз
Описание: This book explores how to use generative adversarial networks in a variety of applications and emphasises their substantial advancements over traditional generative models. This books major goal is to concentrate on cutting-edge research in deep learning and generative adversarial networks, which includes creating new tools and methods for processing text, images, and audio. A Generative Adversarial Network (GAN) is a class of machine learning framework and is the next emerging network in deep learning applications.

Generative Adversarial Networks(GANs) have the feasibility to build improved models, as they can generate the sample data as per application requirements. There are various applications of GAN in science and technology, including computer vision, security, multimedia and advertisements, image generation, image translation,text-to-images synthesis, video synthesis, generating high-resolution images, drug discovery, etc. Features:Presents a comprehensive guide on how to use GAN for images and videos.

Includes case studies of Underwater Image Enhancement Using Generative Adversarial Network, Intrusion detection using GANHighlights the inclusion of gaming effects using deep learning methodsExamines the significant technological advancements in GAN and its real-world application. Discusses as GAN challenges and optimal solutionsThe book addresses scientific aspects for a wider audience such as junior and senior engineering, undergraduate and postgraduate students, researchers, and anyone interested in the trends development and opportunities in GAN and Deep Learning. The material in the book can serve as a reference in libraries, accreditation agencies, government agencies, and especially the academic institution of higher education intending to launch or reform their engineering curriculum




Generative Adversarial Learning: Architectures and Applications

Автор: Razavi-Far Roozbeh, Ruiz-Garcia Ariel, Palade Vasile
Название: Generative Adversarial Learning: Architectures and Applications
ISBN: 3030913899 ISBN-13(EAN): 9783030913892
Издательство: Springer
Рейтинг:
Цена: 25155.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides a collection of recent research works addressing theoretical issues on improving the learning process and the generalization of GANs as well as state-of-the-art applications of GANs to various domains of real life. Adversarial learning fascinates the attention of machine learning communities across the world in recent years. Generative adversarial networks (GANs), as the main method of adversarial learning, achieve great success and popularity by exploiting a minimax learning concept, in which two networks compete with each other during the learning process. Their key capability is to generate new data and replicate available data distributions, which are needed in many practical applications, particularly in computer vision and signal processing. The book is intended for academics, practitioners, and research students in artificial intelligence looking to stay up to date with the latest advancements on GANs’ theoretical developments and their applications.

Generative Adversarial Learning: Architectures and Applications

Автор: Razavi-Far
Название: Generative Adversarial Learning: Architectures and Applications
ISBN: 3030913929 ISBN-13(EAN): 9783030913922
Издательство: Springer
Рейтинг:
Цена: 25155.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides a collection of recent research works addressing theoretical issues on improving the learning process and the generalization of GANs as well as state-of-the-art applications of GANs to various domains of real life. Adversarial learning fascinates the attention of machine learning communities across the world in recent years. Generative adversarial networks (GANs), as the main method of adversarial learning, achieve great success and popularity by exploiting a minimax learning concept, in which two networks compete with each other during the learning process. Their key capability is to generate new data and replicate available data distributions, which are needed in many practical applications, particularly in computer vision and signal processing. The book is intended for academics, practitioners, and research students in artificial intelligence looking to stay up to date with the latest advancements on GANs’ theoretical developments and their applications.

The Informational Complexity of Learning

Автор: Partha Niyogi
Название: The Informational Complexity of Learning
ISBN: 1461374936 ISBN-13(EAN): 9781461374930
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Among other topics, The Informational Complexity of Learning: Perspectives on Neural Networks and Generative Grammar brings together two important but very different learning problems within the same analytical framework.

Resilient Control in Cyber-Physical Systems: Countering Uncertainty, Constraints, and Adversarial Behavior

Автор: Sean Weerakkody, Omur Ozel, Yilin Mo, Bruno Sinopoli
Название: Resilient Control in Cyber-Physical Systems: Countering Uncertainty, Constraints, and Adversarial Behavior
ISBN: 1680835866 ISBN-13(EAN): 9781680835861
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 12197.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Provides a comprehensive survey of intelligent tools for analysis and design that take fundamental steps towards achieving resilient operation in Cyber-Physical Systems. The authors investigate the challenges of achieving reliable control and estimation over networks, particularly in the face of uncertainty and resource constraints.

Adversarial robustness for machine learning

Автор: Chen, Pin-yu (research Sta? Member, Ibm Thomas J. Watson Research Center, Yorktown Heights, Ny, Usa) Hsieh, Cho-jui (assistant Professor, Ucla Compute
Название: Adversarial robustness for machine learning
ISBN: 0128240202 ISBN-13(EAN): 9780128240205
Издательство: Elsevier Science
Рейтинг:
Цена: 14308.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: He is exactly what this age needs, a real voice of universal spirituality. His appeal is urgent, human and sacred. DAN CRUSEY Sidney, Ohio Each era has its own prophet poets. Russia has been praying and is praying poems by Pushkin, a holy name for every Russian. Ayaz seems to touch us with that sensitivity, inspiring and changing the rhythm of our breathing. SEBARITA KAKHOVSKAYA Ukraine His words transform you through a subtle Alchemy process, and you suddenly travel from a Neophyte to the Connoisseur of Mysteries. His poetry is a gateway to the stars ELLURA ZURIA Rhn, Germany Reading Ayaz is akin to a journey into the

Deep Generative Modeling

Автор: Tomczak
Название: Deep Generative Modeling
ISBN: 3030931609 ISBN-13(EAN): 9783030931605
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This textbook tackles the problem of formulating AI systems by combining probabilistic modeling and deep learning. Moreover, it goes beyond typical predictive modeling and brings together supervised learning and unsupervised learning. The resulting paradigm, called deep generative modeling, utilizes the generative perspective on perceiving the surrounding world. It assumes that each phenomenon is driven by an underlying generative process that defines a joint distribution over random variables and their stochastic interactions, i.e., how events occur and in what order. The adjective "deep" comes from the fact that the distribution is parameterized using deep neural networks. There are two distinct traits of deep generative modeling. First, the application of deep neural networks allows rich and flexible parameterization of distributions. Second, the principled manner of modeling stochastic dependencies using probability theory ensures rigorous formulation and prevents potential flaws in reasoning. Moreover, probability theory provides a unified framework where the likelihood function plays a crucial role in quantifying uncertainty and defining objective functions. Deep Generative Modeling is designed to appeal to curious students, engineers, and researchers with a modest mathematical background in undergraduate calculus, linear algebra, probability theory, and the basics in machine learning, deep learning, and programming in Python and PyTorch (or other deep learning libraries). It will appeal to students and researchers from a variety of backgrounds, including computer science, engineering, data science, physics, and bioinformatics, who wish to become familiar with deep generative modeling. To engage the reader, the book introduces fundamental concepts with specific examples and code snippets. The full code accompanying the book is available on github. The ultimate aim of the book is to outline the most important techniques in deep generative modeling and, eventually, enable readers to formulate new models and implement them.

Deep Generative Modeling

Автор: Tomczak Jakub M.
Название: Deep Generative Modeling
ISBN: 3030931579 ISBN-13(EAN): 9783030931575
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Поставка под заказ.

Описание: This textbook tackles the problem of formulating AI systems by combining probabilistic modeling and deep learning. Moreover, it goes beyond typical predictive modeling and brings together supervised learning and unsupervised learning. The resulting paradigm, called deep generative modeling, utilizes the generative perspective on perceiving the surrounding world. It assumes that each phenomenon is driven by an underlying generative process that defines a joint distribution over random variables and their stochastic interactions, i.e., how events occur and in what order. The adjective "deep" comes from the fact that the distribution is parameterized using deep neural networks. There are two distinct traits of deep generative modeling. First, the application of deep neural networks allows rich and flexible parameterization of distributions. Second, the principled manner of modeling stochastic dependencies using probability theory ensures rigorous formulation and prevents potential flaws in reasoning. Moreover, probability theory provides a unified framework where the likelihood function plays a crucial role in quantifying uncertainty and defining objective functions. Deep Generative Modeling is designed to appeal to curious students, engineers, and researchers with a modest mathematical background in undergraduate calculus, linear algebra, probability theory, and the basics in machine learning, deep learning, and programming in Python and PyTorch (or other deep learning libraries). It will appeal to students and researchers from a variety of backgrounds, including computer science, engineering, data science, physics, and bioinformatics, who wish to become familiar with deep generative modeling. To engage the reader, the book introduces fundamental concepts with specific examples and code snippets. The full code accompanying the book is available on github. The ultimate aim of the book is to outline the most important techniques in deep generative modeling and, eventually, enable readers to formulate new models and implement them.

Deep Generative Models, and Data Augmentation, Labelling, and Imperfections: First Workshop, DGM4MICCAI 2021, and First Workshop, DALI 2021, Held in C

Автор: Engelhardt Sandy, Oksuz Ilkay, Zhu Dajiang
Название: Deep Generative Models, and Data Augmentation, Labelling, and Imperfections: First Workshop, DGM4MICCAI 2021, and First Workshop, DALI 2021, Held in C
ISBN: 3030882098 ISBN-13(EAN): 9783030882099
Издательство: Springer
Рейтинг:
Цена: 9083.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the refereed proceedings of the First MICCAI Workshop on Deep Generative Models, DG4MICCAI 2021, and the First MICCAI Workshop on Data Augmentation, Labelling, and Imperfections, DALI 2021, held in conjunction with MICCAI 2021, in October 2021.

Generative AI with Python and TensorFlow 2: Harness the power of generative models to create images, text, and music

Автор: Babcock Joseph, Bali Raghav
Название: Generative AI with Python and TensorFlow 2: Harness the power of generative models to create images, text, and music
ISBN: 1800200889 ISBN-13(EAN): 9781800200883
Издательство: Неизвестно
Рейтинг:
Цена: 12137.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Packed with intriguing real-world projects as well as theory, Generative AI with Python and TensorFlow 2 enables you to leverage artificial intelligence creatively and generate human-like data in the form of speech, text, images, and music.

Machine Learning

Автор: Tony Jebara
Название: Machine Learning
ISBN: 1461347564 ISBN-13(EAN): 9781461347569
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Machine Learning: Discriminative and Generative covers the main contemporary themes and tools in machine learning ranging from Bayesian probabilistic models to discriminative support-vector machines.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия