Statistical Bases of Reference Values in Laboratory Medicine, Harris, Eugene K.
Автор: Trevor Hastie; Robert Tibshirani; Jerome Friedman Название: The Elements of Statistical Learning ISBN: 0387848576 ISBN-13(EAN): 9780387848570 Издательство: Springer Рейтинг: Цена: 10480.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This major new edition features many topics not covered in the original, including graphical models, random forests, and ensemble methods. As before, it covers the conceptual framework for statistical data in our rapidly expanding computerized world.
Автор: Provan, Drew Название: Oxford Handbook of Clinical and Laboratory Investigation ISBN: 019876653X ISBN-13(EAN): 9780198766537 Издательство: Oxford Academ Рейтинг: Цена: 5701.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Provides an authoritative guide to investigation and diagnosis. Describes key symptoms and signs, alongisde appropriate tests, and highlights pitfalls in interpreting results. Describes a clear, rational method of investigation in order to aid quick and efficient diagnosis, and prevent over-investigation of patients.
Автор: Rizzo Название: Statistical Computing With R 2E ISBN: 1466553324 ISBN-13(EAN): 9781466553323 Издательство: Taylor&Francis Рейтинг: Цена: 11176.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Praise for the First Edition:". . .
the book serves as an excellent tutorial on the R language, providing examples that illustrate programming concepts in the context of practical computational problems. The book will be of great interest for all specialists working on computational statistics and Monte Carlo methods for modeling and simulation." - Tzvetan Semerdjiev, Zentralblatt MathComputational statistics and statistical computing are two areas within statistics that may be broadly described as computational, graphical, and numerical approaches to solving statistical problems. Like its bestselling predecessor, Statistical Computing with R, Second Edition covers the traditional core material of these areas with an emphasis on using the R language via an examples-based approach.
The new edition is up-to-date with the many advances that have been made in recent years. Features Provides an overview of computational statistics and an introduction to the R computing environment. Focuses on implementation rather than theory.
Explores key topics in statistical computing including Monte Carlo methods in inference, bootstrap and jackknife, permutation tests, Markov chain Monte Carlo (MCMC) methods, and density estimation. Includes new sections, exercises and applications as well as new chapters on resampling methods and programming topics. Includes coverage of recent advances including R Studio, the tidyverse, knitr and ggplot2 Accompanied by online supplements available on GitHub including R code for all the exercises as well as tutorials and extended examples on selected topics.
Suitable for an introductory course in computational statistics or for self-study, Statistical Computing with R, Second Edition provides a balanced, accessible introduction to computational statistics and statistical computing. About the AuthorMaria Rizzo is Professor in the Department of Mathematics and Statistics at Bowling Green State University in Bowling Green, Ohio, where she teaches statistics, actuarial science, computational statistics, statistical programming and data science. Prior to joining the faculty at BGSU in 2006, she was Assistant Professor in the Department of Mathematics at Ohio University in Athens, Ohio.
Her main research area is energy statistics and distance correlation. She is the software developer and maintainer of the energy package for R. She also enjoys writing books including a forthcoming joint research monograph on energy statistics.
Автор: Broemeling Название: Bayesian Methods for Repeated Measures ISBN: 1138894044 ISBN-13(EAN): 9781138894044 Издательство: Taylor&Francis Рейтинг: Цена: 9492.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Analyze Repeated Measures Studies Using Bayesian Techniques
Going beyond standard non-Bayesian books, Bayesian Methods for Repeated Measures presents the main ideas for the analysis of repeated measures and associated designs from a Bayesian viewpoint. It describes many inferential methods for analyzing repeated measures in various scientific areas, especially biostatistics.
The author takes a practical approach to the analysis of repeated measures. He bases all the computing and analysis on the WinBUGS package, which provides readers with a platform that efficiently uses prior information. The book includes the WinBUGS code needed to implement posterior analysis and offers the code for download online.
Accessible to both graduate students in statistics and consulting statisticians, the book introduces Bayesian regression techniques, preliminary concepts and techniques fundamental to the analysis of repeated measures, and the most important topic for repeated measures studies: linear models. It presents an in-depth explanation of estimating the mean profile for repeated measures studies, discusses choosing and estimating the covariance structure of the response, and expands the representation of a repeated measure to general mixed linear models. The author also explains the Bayesian analysis of categorical response data in a repeated measures study, Bayesian analysis for repeated measures when the mean profile is nonlinear, and a Bayesian approach to missing values in the response variable.
Автор: Joseph K. Blitzstein, Jessica Hwang Название: Introduction to Probability, Second Edition ISBN: 1138369918 ISBN-13(EAN): 9781138369917 Издательство: Taylor&Francis Рейтинг: Цена: 11176.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Assumes one-semester of calculus. "Stories" make distributions (Normal, Binomial, Poisson that are widely-used in statistics) easier to remember, understand. Many books write down formulas without explaining clearly why these particular distributions are important or how they are all connected.
Автор: Sakai, Tetsuya Название: Laboratory experiments in information retrieval ISBN: 9811311986 ISBN-13(EAN): 9789811311987 Издательство: Springer Рейтинг: Цена: 6988.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Covering aspects from principles and limitations of statistical significance tests to topic set size design and power analysis, this book guides readers to statistically well-designed experiments. Although classical statistical significance tests are to some extent useful in information retrieval (IR) evaluation, they can harm research unless they are used appropriately with the right sample sizes and statistical power and unless the test results are reported properly. The first half of the book is mainly targeted at undergraduate students, and the second half is suitable for graduate students and researchers who regularly conduct laboratory experiments in IR, natural language processing, recommendations, and related fields.Chapters 1–5 review parametric significance tests for comparing system means, namely, t-tests and ANOVAs, and show how easily they can be conducted using Microsoft Excel or R. These chapters also discuss a few multiple comparison procedures for researchers who are interested in comparing every system pair, including a randomised version of Tukey's Honestly Significant Difference test. The chapters then deal with known limitations of classical significance testing and provide practical guidelines for reporting research results regarding comparison of means. Chapters 6 and 7 discuss statistical power. Chapter 6 introduces topic set size design to enable test collection builders to determine an appropriate number of topics to create. Readers can easily use the author’s Excel tools for topic set size design based on the paired and two-sample t-tests, one-way ANOVA, and confidence intervals. Chapter 7 describes power-analysis-based methods for determining an appropriate sample size for a new experiment based on a similar experiment done in the past, detailing how to utilize the author’s R tools for power analysis and how to interpret the results. Case studies from IR for both Excel-based topic set size design and R-based power analysis are also provided.
Statistical Methods for Field and Laboratory Studies in Behavioral Ecology focuses on how statistical methods may be used to make sense of behavioral ecology and other data. It presents fundamental concepts in statistical inference and intermediate topics such as multiple least squares regression and ANOVA. The objective is to teach students to recognize situations where various statistical methods should be used, understand the strengths and limitations of the methods, and to show how they are implemented in R code. Examples are based on research described in the literature of behavioral ecology, with data sets and analysis code provided.
Features:
This intermediate to advanced statistical methods text was written with the behavioral ecologist in mind
Computer programs are provided, written in the R language.
Datasets are also provided, mostly based, at least to some degree, on real studies.
Methods and ideas discussed include multiple regression and ANOVA, logistic and Poisson regression, machine learning and model identification, time-to-event modeling, time series and stochastic modeling, game-theoretic modeling, multivariate methods, study design/sample size, and what to do when things go wrong.
It is assumed that the reader has already had exposure to statistics through a first introductory course at least, and also has sufficient knowledge of R. However, some introductory material is included to aid the less initiated reader.
Scott Pardo, Ph.D., is an accredited professional statistician (PStat(R)) by the American Statistical Association. Michael Pardo is a Ph.D. is a candidate in behavioral ecology at Cornell University, specializing in animal communication and social behavior.
Автор: Deshpande Jayant V & Purohit Sudha G Название: Lifetime Data: Statistical Models And Methods (Second Edition) ISBN: 9814730661 ISBN-13(EAN): 9789814730662 Издательство: World Scientific Publishing Цена: 10296.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
This book is meant for postgraduate modules that cover lifetime data in reliability and survival analysis as taught in statistics, engineering statistics and medical statistics courses. It is helpful for researchers who wish to choose appropriate models and methods for analyzing lifetime data. There is an extensive discussion on the concept and role of ageing in choosing appropriate models for lifetime data, with a special emphasis on tests of exponentiality. There are interesting contributions related to the topics of ageing, tests for exponentiality, competing risks and repairable systems. A special feature of this book is that it introduces the public domain R-software and explains how it can be used in computations of methods discussed in the book.
This new edition includes new sections on Frailty Models and Accelerated Life Time Models. Many more illustrations and exercises are also included.
Автор: Fu Название: A Practical Guide To Age-Period Coh ISBN: 1466592656 ISBN-13(EAN): 9781466592650 Издательство: Taylor&Francis Рейтинг: Цена: 11789.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Age-Period-Cohort analysis has a wide range of applications, from chronic disease incidence and mortality data in public health and epidemiology, to many social events (birth, death, marriage, etc) in social sciences and demography, and most recently investment, healthcare and pension contribution in economics and finance. Although APC analysis has been studied for the past 40 years and a lot of methods have been developed, the identification problem has been a major hurdle in analyzing APC data, where the regression model has multiple estimators, leading to indetermination of parameters and temporal trends. A Practical Guide to Age-Period Cohort Analysis: The Identification Problem and Beyond provides practitioners a guide to using APC models as well as offers graduate students and researchers an overview of the current methods for APC analysis while clarifying the confusion of the identification problem by explaining why some methods address the problem well while others do not.
Features
- Gives a comprehensive and in-depth review of models and methods in APC analysis.
- Provides an in-depth explanation of the identification problem and statistical approaches to addressing the problem and clarifying the confusion.
- Utilizes real data sets to illustrate different data issues that have not been addressed in the literature, including unequal intervals in age and period groups, etc.
Contains step-by-step modeling instruction and R programs to demonstrate how to conduct APC analysis and how to conduct prediction for the future
Reflects the most recent development in APC modeling and analysis including the intrinsic estimator
Wenjiang Fu is a professor of statistics at the University of Houston. Professor Fu's research interests include modeling big data, applied statistics research in health and human genome studies, and analysis of complex economic and social science data.
Автор: Nagaraja Название: Measuring Society_Nagaraja ISBN: 113803598X ISBN-13(EAN): 9781138035980 Издательство: Taylor&Francis Рейтинг: Цена: 4133.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book is a short, accessible guide to six topics: jobs, house prices, inequality, prices for goods and services, poverty, and deprivation. Each relates to concepts we use on a personal level to form an understanding of the society in which we live: We need a job, a place to live, and food to eat.
Автор: Pardo, Scott (bayer Healthcare, Whippany, New Jersey, Usa) Pardo, Michael (cornell University) Название: Statistical methods for field and laboratory studies in behavioral ecology ISBN: 1138743364 ISBN-13(EAN): 9781138743366 Издательство: Taylor&Francis Рейтинг: Цена: 16078.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Statistical methods are ubiquitous in behavioural ecology research. This text will provide some elementary material, with enough theory so that the reader will be able to understand the uses, advantages, and limitations of those methods as they apply to studying animal behaviour in the wild.