Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Bayesian Methods for Repeated Measures, Broemeling


Варианты приобретения
Цена: 9492.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Broemeling
Название:  Bayesian Methods for Repeated Measures
ISBN: 9781138894044
Издательство: Taylor&Francis
Классификация:

ISBN-10: 1138894044
Обложка/Формат: Paperback
Страницы: 568
Вес: 1.05 кг.
Дата издания: 01.06.2018
Серия: Chapman & hall/crc biostatistics series
Язык: English
Размер: 235 x 159
Читательская аудитория: Tertiary education (us: college)
Ключевые слова: Probability & statistics, MATHEMATICS / Probability & Statistics / General,REFERENCE / General
Основная тема: Statistical Theory & Methods
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Европейский союз
Описание:

Analyze Repeated Measures Studies Using Bayesian Techniques

Going beyond standard non-Bayesian books, Bayesian Methods for Repeated Measures presents the main ideas for the analysis of repeated measures and associated designs from a Bayesian viewpoint. It describes many inferential methods for analyzing repeated measures in various scientific areas, especially biostatistics.

The author takes a practical approach to the analysis of repeated measures. He bases all the computing and analysis on the WinBUGS package, which provides readers with a platform that efficiently uses prior information. The book includes the WinBUGS code needed to implement posterior analysis and offers the code for download online.

Accessible to both graduate students in statistics and consulting statisticians, the book introduces Bayesian regression techniques, preliminary concepts and techniques fundamental to the analysis of repeated measures, and the most important topic for repeated measures studies: linear models. It presents an in-depth explanation of estimating the mean profile for repeated measures studies, discusses choosing and estimating the covariance structure of the response, and expands the representation of a repeated measure to general mixed linear models. The author also explains the Bayesian analysis of categorical response data in a repeated measures study, Bayesian analysis for repeated measures when the mean profile is nonlinear, and a Bayesian approach to missing values in the response variable.




Analysis of repeated measures data

Автор: Islam, M. Ataharul
Название: Analysis of repeated measures data
ISBN: 9811037930 ISBN-13(EAN): 9789811037931
Издательство: Springer
Рейтинг:
Цена: 11179.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Introduction.- Linear Models.- Univariate Exponential Family of Distributions.- Generalized Linear Model.- Covariate Dependent Markov Models.- Model for Bivariate Binary Data.- Model for Bivariate Geometric Model.- Model for Bivariate Count Data.- Models for Bivariate Exponential and Weibull Data.- Quasi -Likelihood Methods.- Generalized Estimating Equations.- A Generalized Multivariate Model.- Multistate and Multistage Models.- Analysing Data Using R and SAS.

Repeated Measurements and Cross-Over Designs

Автор: Raghavarao Damaraju
Название: Repeated Measurements and Cross-Over Designs
ISBN: 111870925X ISBN-13(EAN): 9781118709252
Издательство: Wiley
Рейтинг:
Цена: 17733.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: An introduction to state-of-the-art experimental design approaches to better understand and interpret repeated measurement data in cross-over designs.

Monte Carlo Methods in Bayesian Computation

Автор: Chen Ming-Hui, Shao Qi-Man, Ibrahim Joseph G.
Название: Monte Carlo Methods in Bayesian Computation
ISBN: 0387989358 ISBN-13(EAN): 9780387989358
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book examines advanced Bayesian computational methods. It presents methods for sampling from posterior distributions and discusses how to compute posterior quantities of interest using Markov chain Monte Carlo (MCMC) samples. This book examines each of these issues in detail and heavily focuses on computing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo methods for estimation of posterior quantities, improving simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, highest posterior density interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. The authors also discuss computions involving model comparisons, including both nested and non-nested models, marginal likelihood methods, ratios of normalizing constants, Bayes factors, the Savage-Dickey density ratio, Stochastic Search Variable Selection, Bayesian Model Averaging, the reverse jump algorithm, and model adequacy using predictive and latent residual approaches.The book presents an equal mixture of theory and applications involving real data. The book is intended as a graduate textbook or a reference book for a one semester course at the advanced masters or Ph.D. level. It would also serve as a useful reference book for applied or theoretical researchers as well as practitioners.Ming-Hui Chen is Associate Professor of Mathematical Sciences at Worcester Polytechnic Institute, Qu-Man Shao is Assistant Professor of Mathematics at the University of Oregon. Joseph G. Ibrahim is Associate Professor of Biostatistics at the Harvard School of Public Health and Dana-Farber Cancer Institute.

Bayesian and Frequentist Regression Methods

Автор: Wakefield
Название: Bayesian and Frequentist Regression Methods
ISBN: 1441909249 ISBN-13(EAN): 9781441909244
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Bayesian and Frequentist Regression Methods provides a modern account of both Bayesian and frequentist methods of regression analysis.

Repeated Measures Design for Empirical Researchers

Автор: J. P. Verma
Название: Repeated Measures Design for Empirical Researchers
ISBN: 1119052718 ISBN-13(EAN): 9781119052715
Издательство: Wiley
Рейтинг:
Цена: 17574.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Discusses how to conceptualize research problems as well as identify appropriate repeated measures designs for research purposes. In this book, examples have been chosen from multiple domains, including psychology, the social sciences, management, and sports science, to aid readers in understanding both the associated theories and methodologies.

Statistical Methods for the Analysis of Repeated Measurements

Автор: Charles S. Davis
Название: Statistical Methods for the Analysis of Repeated Measurements
ISBN: 1441929762 ISBN-13(EAN): 9781441929761
Издательство: Springer
Рейтинг:
Цена: 13969.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: I have endeavored to provide a comprehensive introduction to a wide - riety of statistical methods for the analysis of repeated measurements. I envision this book primarily as a textbook, because the notes on which it is based have been used in a semester-length graduate course I have taught since1991.Thiscourseisprimarilytakenbygraduatestudentsinbiostat- tics and statistics, although students and faculty from other departments have audited the course. I also anticipate that the book will be a useful r- erence for practicing statisticians. This assessment is based on the positive responses I have received to numerous short courses I have taught on this topic to academic and industry groups. Althoughmyintentistoprovideareasonablycomprehensiveoverviewof methodsfortheanalysisofrepeatedmeasurements, Idonotviewthisbook as a de?nitive "state of the art" compendium of research in this area. Some general approaches are extremely active areas of current research, and it is not feasible, given the goals of this book, to include a comprehensive summary and list of references. Instead, my focus is primarily on methods that are implemented in standard statistical software packages. As a result, thelevelofdetailonsometopicsislessthaninotherbooks, andsomemore recent methods of analysis are not included. One particular example is the topic of nonlinear mixed models for the analysis of repeated measurements (Davidian and Giltinan, 1995; Vonesh and Chinchilli, 1996). With respect to some of the more recent methods of analysis, I do attempt to mention some of the areas of current research.

Monte Carlo Methods in Bayesian Computation. M.-H. Chen, Q.-M. Shao, J.G. Ibrahim.

Название: Monte Carlo Methods in Bayesian Computation. M.-H. Chen, Q.-M. Shao, J.G. Ibrahim.
ISBN: 146127074X ISBN-13(EAN): 9781461270744
Издательство: Springer
Рейтинг:
Цена: 23058.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Sampling from the posterior distribution and computing posterior quanti- ties of interest using Markov chain Monte Carlo (MCMC) samples are two major challenges involved in advanced Bayesian computation. This book examines each of these issues in detail and focuses heavily on comput- ing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo (MC) methods for estimation of posterior summaries, improv- ing simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, Highest Poste- rior Density (HPD) interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. Also extensive discussion is given for computations in- volving model comparisons, including both nested and nonnested models. Marginal likelihood methods, ratios of normalizing constants, Bayes fac- tors, the Savage-Dickey density ratio, Stochastic Search Variable Selection (SSVS), Bayesian Model Averaging (BMA), the reverse jump algorithm, and model adequacy using predictive and latent residual approaches are also discussed. The book presents an equal mixture of theory and real applications.

Bayesian Methods in Structural Bioinformatics

Автор: Thomas Hamelryck; Kanti Mardia; Jesper Ferkinghoff
Название: Bayesian Methods in Structural Bioinformatics
ISBN: 3642439888 ISBN-13(EAN): 9783642439889
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This edited volume is a high-profile overview of the current state of play in statistical methods applied to structural bioinformatics. With almost 100 pages of introductory material, it covers topics including protein structure prediction and simulation.

Maximum Entropy and Bayesian Methods

Автор: John Skilling
Название: Maximum Entropy and Bayesian Methods
ISBN: 0792302249 ISBN-13(EAN): 9780792302247
Издательство: Springer
Рейтинг:
Цена: 41647.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Maximum Entropy and Bayesian Methods Garching, Germany 1998

Автор: Wolfgang von der Linden; Volker Dose; Rainer Fisch
Название: Maximum Entropy and Bayesian Methods Garching, Germany 1998
ISBN: 9401059829 ISBN-13(EAN): 9789401059824
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Proceedings of the 18th International Workshop on Maximum Entropy and Bayesian Methods of Statistical Analysis

Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics

Автор: Daniel Sorensen; Daniel Gianola
Название: Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics
ISBN: 1441929975 ISBN-13(EAN): 9781441929976
Издательство: Springer
Рейтинг:
Цена: 26120.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book, suitable for numerate biologists and for applied statisticians, provides the foundations of likelihood, Bayesian and MCMC methods in the context of genetic analysis of quantitative traits.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия