Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Clustering, Mirkin, Boris


Варианты приобретения
Цена: 22202.00р.
Кол-во:
 о цене
Наличие: Отсутствует. Возможна поставка под заказ.

При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Mirkin, Boris
Название:  Clustering
ISBN: 9781439838419
Издательство: Taylor&Francis
Классификация:

ISBN-10: 1439838410
Обложка/Формат: Hardback
Страницы: 374
Вес: 0.67 кг.
Дата издания: 17.10.2012
Язык: English
Издание: 2 ed
Размер: 237 x 161 x 24
Читательская аудитория: Postgraduate, research & scholarly
Подзаголовок: A data recovery approach, second edition
Рейтинг:
Поставляется из: Европейский союз


      Старое издание
Clustering for Data Mining

Автор: Mirkin, Boris
Название: Clustering for Data Mining
ISBN: 1584885343 ISBN-13(EAN): 9781584885344
Издательство: Taylor&Francis
Цена: 9186.00 р.
Наличие на складе: Поставка под заказ.
Описание: Presents a theory that not only closes gaps in K-Means and Ward methods, but also extends them into areas of interest, such as clustering mixed scale data and incomplete clustering. This work suggests methods for both cluster finding and cluster description, and includes nearly 60 computational examples covering the various stages of clustering.


Clustering

Автор: Mirkin, Boris
Название: Clustering
ISBN: 036738079X ISBN-13(EAN): 9780367380793
Издательство: Taylor&Francis
Рейтинг:
Цена: 9798.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Often considered more of an art than a science, books on clustering have been dominated by learning through example with techniques chosen almost through trial and error. Even the two most popular, and most related, clustering methods-K-Means for partitioning and Ward's method for hierarchical clustering-have lacked the theoretical underpinning required to establish a firm relationship between the two methods and relevant interpretation aids. Other approaches, such as spectral clustering or consensus clustering, are considered absolutely unrelated to each other or to the two above mentioned methods.





Clustering: A Data Recovery Approach, Second Edition presents a unified modeling approach for the most popular clustering methods: the K-Means and hierarchical techniques, especially for divisive clustering. It significantly expands coverage of the mathematics of data recovery, and includes a new chapter covering more recent popular network clustering approaches-spectral, modularity and uniform, additive, and consensus-treated within the same data recovery approach. Another added chapter covers cluster validation and interpretation, including recent developments for ontology-driven interpretation of clusters. Altogether, the insertions added a hundred pages to the book, even in spite of the fact that fragments unrelated to the main topics were removed.





Illustrated using a set of small real-world datasets and more than a hundred examples, the book is oriented towards students, practitioners, and theoreticians of cluster analysis. Covering topics that are beyond the scope of most texts, the author's explanations of data recovery methods, theory-based advice, pre- and post-processing issues and his clear, practical instructions for real-world data mining make this book ideally suited for teaching, self-study, and professional reference.

Modern Technologies for Big Data Classification and Clustering

Автор: Seetha Hari, Murty M. Narasimha, Tripathy B. K.
Название: Modern Technologies for Big Data Classification and Clustering
ISBN: 1522528059 ISBN-13(EAN): 9781522528050
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 31324.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Data has increased due to the growing use of web applications and communication devices. It is necessary to develop new techniques of managing data in order to ensure adequate usage.Modern Technologies for Big Data Classification and Clustering is an essential reference source for the latest scholarly research on handling large data sets with conventional data mining and provide information about the new technologies developed for the management of large data. Featuring coverage on a broad range of topics such as text and web data analytics, risk analysis, and opinion mining, this publication is ideally designed for professionals, researchers, and students seeking current research on various concepts of big data analytics.Topics Covered:The many academic areas covered in this publication include, but are not limited to:Data visualizationDistributed Computing SystemsOpinion MiningPrivacy and securityRisk analysisSocial Network AnalysisText Data AnalyticsWeb Data Analytics

Clustering High--Dimensional Data

Автор: Francesco Masulli; Alfredo Petrosino; Stefano Rove
Название: Clustering High--Dimensional Data
ISBN: 3662485761 ISBN-13(EAN): 9783662485767
Издательство: Springer
Рейтинг:
Цена: 5590.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the proceedings of the International Workshop on Clustering High-Dimensional Data, CHDD 2012, held in Naples, Italy, in May 2012. and the most common approach to tackle dimensionality problems, namely, dimensionality reduction and its application in clustering.

Text Mining

Автор: Ashok N. Srivastava, Mehran Sahami
Название: Text Mining
ISBN: 1420059408 ISBN-13(EAN): 9781420059403
Издательство: Taylor&Francis
Рейтинг:
Цена: 15004.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Focuses on statistical methods for text mining and analysis. This work examines methods to automatically cluster and classify text documents and applies these methods in a variety of areas, including adaptive information filtering, information distillation, and text search.

Relational Data Clustering

Автор: Long, Bo
Название: Relational Data Clustering
ISBN: 1420072617 ISBN-13(EAN): 9781420072617
Издательство: Taylor&Francis
Рейтинг:
Цена: 15004.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Clustering Methods for Big Data Analytics

Автор: Olfa Nasraoui; Chiheb-Eddine Ben N`Cir
Название: Clustering Methods for Big Data Analytics
ISBN: 3319978632 ISBN-13(EAN): 9783319978635
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation.

Data Clustering

Автор: Aggarwal, Charu C.
Название: Data Clustering
ISBN: 1466558210 ISBN-13(EAN): 9781466558212
Издательство: Taylor&Francis
Рейтинг:
Цена: 19906.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Correlation Clustering

Автор: Francesco
Название: Correlation Clustering
ISBN: 3031791983 ISBN-13(EAN): 9783031791987
Издательство: Springer
Рейтинг:
Цена: 8384.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Given a set of objects and a pairwise similarity measure between them, the goal of correlation clustering is to partition the objects in a set of clusters to maximize the similarity of the objects within the same cluster and minimize the similarity of the objects in different clusters.

Data Clustering in C++

Автор: Gan, Guojun
Название: Data Clustering in C++
ISBN: 0367382954 ISBN-13(EAN): 9780367382957
Издательство: Taylor&Francis
Рейтинг:
Цена: 9798.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Data clustering is a highly interdisciplinary field, the goal of which is to divide a set of objects into homogeneous groups such that objects in the same group are similar and objects in different groups are quite distinct. Thousands of theoretical papers and a number of books on data clustering have been published over the past 50 years. However, few books exist to teach people how to implement data clustering algorithms. This book was written for anyone who wants to implement or improve their data clustering algorithms.



Using object-oriented design and programming techniques, Data Clustering in C++ exploits the commonalities of all data clustering algorithms to create a flexible set of reusable classes that simplifies the implementation of any data clustering algorithm. Readers can follow the development of the base data clustering classes and several popular data clustering algorithms. Additional topics such as data pre-processing, data visualization, cluster visualization, and cluster interpretation are briefly covered.





This book is divided into three parts--







  • Data Clustering and C++ Preliminaries: A review of basic concepts of data clustering, the unified modeling language, object-oriented programming in C++, and design patterns


  • A C++ Data Clustering Framework: The development of data clustering base classes


  • Data Clustering Algorithms: The implementation of several popular data clustering algorithms






A key to learning a clustering algorithm is to implement and experiment the clustering algorithm. Complete listings of classes, examples, unit test cases, and GNU configuration files are included in the appendices of this book as well as in the downloadable resources. The only requirements to compile the code are a modern C++ compiler and the Boost C++ libraries.

Foundations and Methods in Combinatorial and Statistical Data Analysis and Clustering

Автор: Isra?l C?sar Lerman
Название: Foundations and Methods in Combinatorial and Statistical Data Analysis and Clustering
ISBN: 1447167910 ISBN-13(EAN): 9781447167914
Издательство: Springer
Рейтинг:
Цена: 23058.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Preface.- On Some Facets of the Partition Set of a Finite Set.- Two Methods of Non-hierarchical Clustering.- Structure and Mathematical Representation of Data.- Ordinal and Metrical Analysis of the Resemblance Notion.- Comparing Attributes by a Probabilistic and Statistical Association I.- Comparing Attributes by a Probabilistic and Statistical Association II.- Comparing Objects or Categories Described by Attributes.- The Notion of "Natural" Class, Tools for its Interpretation. The Classifiability Concept.- Quality Measures in Clustering.- Building a Classification Tree.- Applying the LLA Method to Real Data.- Conclusion and Thoughts for Future Works

Multiobjective Genetic Algorithms for Clustering

Автор: Ujjwal Maulik; Sanghamitra Bandyopadhyay; Anirban
Название: Multiobjective Genetic Algorithms for Clustering
ISBN: 3642439632 ISBN-13(EAN): 9783642439636
Издательство: Springer
Рейтинг:
Цена: 7680.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book covers clustering using multiobjective genetic algorithms, with extensive real-life application in data mining and bioinformatics. The authors offer instructions for relevant techniques, and demonstrate real-world applications in several disciplines.

Advances in K-means Clustering

Автор: Junjie Wu
Название: Advances in K-means Clustering
ISBN: 3642447570 ISBN-13(EAN): 9783642447570
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The K-means algorithm is commonly used in data mining and business intelligence. This award-winning research pioneers its application to the intricacies of `big data`, detailing a theoretical framework for aggregating and validating clusters with K-means.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия