Автор: Ashok N. Srivastava, Mehran Sahami Название: Text Mining ISBN: 1420059408 ISBN-13(EAN): 9781420059403 Издательство: Taylor&Francis Рейтинг: Цена: 15004.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Focuses on statistical methods for text mining and analysis. This work examines methods to automatically cluster and classify text documents and applies these methods in a variety of areas, including adaptive information filtering, information distillation, and text search.
Описание: Preface.- On Some Facets of the Partition Set of a Finite Set.- Two Methods of Non-hierarchical Clustering.- Structure and Mathematical Representation of Data.- Ordinal and Metrical Analysis of the Resemblance Notion.- Comparing Attributes by a Probabilistic and Statistical Association I.- Comparing Attributes by a Probabilistic and Statistical Association II.- Comparing Objects or Categories Described by Attributes.- The Notion of "Natural" Class, Tools for its Interpretation. The Classifiability Concept.- Quality Measures in Clustering.- Building a Classification Tree.- Applying the LLA Method to Real Data.- Conclusion and Thoughts for Future Works
Автор: Olfa Nasraoui; Chiheb-Eddine Ben N`Cir Название: Clustering Methods for Big Data Analytics ISBN: 3319978632 ISBN-13(EAN): 9783319978635 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation.
Автор: Long, Bo , Zhang, Zhongfei , Yu, Philip S. Название: Relational Data Clustering ISBN: 0367384051 ISBN-13(EAN): 9780367384050 Издательство: Taylor&Francis Рейтинг: Цена: 9492.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
A culmination of the authors' years of extensive research on this topic, Relational Data Clustering: Models, Algorithms, and Applications addresses the fundamentals and applications of relational data clustering. It describes theoretic models and algorithms and, through examples, shows how to apply these models and algorithms to solve real-world problems.
After defining the field, the book introduces different types of model formulations for relational data clustering, presents various algorithms for the corresponding models, and demonstrates applications of the models and algorithms through extensive experimental results. The authors cover six topics of relational data clustering:
Clustering on bi-type heterogeneous relational data
Multi-type heterogeneous relational data
Homogeneous relational data clustering
Clustering on the most general case of relational data
Individual relational clustering framework
Recent research on evolutionary clustering
This book focuses on both practical algorithm derivation and theoretical framework construction for relational data clustering. It provides a complete, self-contained introduction to advances in the field.
Автор: Francesco Название: Correlation Clustering ISBN: 3031791983 ISBN-13(EAN): 9783031791987 Издательство: Springer Рейтинг: Цена: 8384.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Given a set of objects and a pairwise similarity measure between them, the goal of correlation clustering is to partition the objects in a set of clusters to maximize the similarity of the objects within the same cluster and minimize the similarity of the objects in different clusters.
Автор: Seetha Hari, Murty M. Narasimha, Tripathy B. K. Название: Modern Technologies for Big Data Classification and Clustering ISBN: 1522528059 ISBN-13(EAN): 9781522528050 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 31324.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Data has increased due to the growing use of web applications and communication devices. It is necessary to develop new techniques of managing data in order to ensure adequate usage.Modern Technologies for Big Data Classification and Clustering is an essential reference source for the latest scholarly research on handling large data sets with conventional data mining and provide information about the new technologies developed for the management of large data. Featuring coverage on a broad range of topics such as text and web data analytics, risk analysis, and opinion mining, this publication is ideally designed for professionals, researchers, and students seeking current research on various concepts of big data analytics.Topics Covered:The many academic areas covered in this publication include, but are not limited to:Data visualizationDistributed Computing SystemsOpinion MiningPrivacy and securityRisk analysisSocial Network AnalysisText Data AnalyticsWeb Data Analytics
Автор: Mirkin, Boris Название: Clustering ISBN: 1439838410 ISBN-13(EAN): 9781439838419 Издательство: Taylor&Francis Рейтинг: Цена: 22202.00 р. Наличие на складе: Поставка под заказ.
Автор: Gan, Guojun Название: Data Clustering in C++ ISBN: 0367382954 ISBN-13(EAN): 9780367382957 Издательство: Taylor&Francis Рейтинг: Цена: 9798.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Data clustering is a highly interdisciplinary field, the goal of which is to divide a set of objects into homogeneous groups such that objects in the same group are similar and objects in different groups are quite distinct. Thousands of theoretical papers and a number of books on data clustering have been published over the past 50 years. However, few books exist to teach people how to implement data clustering algorithms. This book was written for anyone who wants to implement or improve their data clustering algorithms.
Using object-oriented design and programming techniques, Data Clustering in C++ exploits the commonalities of all data clustering algorithms to create a flexible set of reusable classes that simplifies the implementation of any data clustering algorithm. Readers can follow the development of the base data clustering classes and several popular data clustering algorithms. Additional topics such as data pre-processing, data visualization, cluster visualization, and cluster interpretation are briefly covered.
This book is divided into three parts--
Data Clustering and C++ Preliminaries: A review of basic concepts of data clustering, the unified modeling language, object-oriented programming in C++, and design patterns
A C++ Data Clustering Framework: The development of data clustering base classes
Data Clustering Algorithms: The implementation of several popular data clustering algorithms
A key to learning a clustering algorithm is to implement and experiment the clustering algorithm. Complete listings of classes, examples, unit test cases, and GNU configuration files are included in the appendices of this book as well as in the downloadable resources. The only requirements to compile the code are a modern C++ compiler and the Boost C++ libraries.
Описание: This book is a comprehensive, hands-on guide to the basics of data mining and machine learning with a special emphasis on supervised and unsupervised learning methods. The book is useful for professionals, students studying data mining and machine learning, and researchers in supervised and unsupervised learning techniques.
Автор: Ujjwal Maulik; Sanghamitra Bandyopadhyay; Anirban Название: Multiobjective Genetic Algorithms for Clustering ISBN: 3642439632 ISBN-13(EAN): 9783642439636 Издательство: Springer Рейтинг: Цена: 7680.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book covers clustering using multiobjective genetic algorithms, with extensive real-life application in data mining and bioinformatics. The authors offer instructions for relevant techniques, and demonstrate real-world applications in several disciplines.
Автор: Mirkin, Boris Название: Clustering ISBN: 036738079X ISBN-13(EAN): 9780367380793 Издательство: Taylor&Francis Рейтинг: Цена: 9798.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Often considered more of an art than a science, books on clustering have been dominated by learning through example with techniques chosen almost through trial and error. Even the two most popular, and most related, clustering methods-K-Means for partitioning and Ward's method for hierarchical clustering-have lacked the theoretical underpinning required to establish a firm relationship between the two methods and relevant interpretation aids. Other approaches, such as spectral clustering or consensus clustering, are considered absolutely unrelated to each other or to the two above mentioned methods.
Clustering: A Data Recovery Approach, Second Edition presents a unified modeling approach for the most popular clustering methods: the K-Means and hierarchical techniques, especially for divisive clustering. It significantly expands coverage of the mathematics of data recovery, and includes a new chapter covering more recent popular network clustering approaches-spectral, modularity and uniform, additive, and consensus-treated within the same data recovery approach. Another added chapter covers cluster validation and interpretation, including recent developments for ontology-driven interpretation of clusters. Altogether, the insertions added a hundred pages to the book, even in spite of the fact that fragments unrelated to the main topics were removed.
Illustrated using a set of small real-world datasets and more than a hundred examples, the book is oriented towards students, practitioners, and theoreticians of cluster analysis. Covering topics that are beyond the scope of most texts, the author's explanations of data recovery methods, theory-based advice, pre- and post-processing issues and his clear, practical instructions for real-world data mining make this book ideally suited for teaching, self-study, and professional reference.
Автор: Junjie Wu Название: Advances in K-means Clustering ISBN: 3642447570 ISBN-13(EAN): 9783642447570 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The K-means algorithm is commonly used in data mining and business intelligence. This award-winning research pioneers its application to the intricacies of `big data`, detailing a theoretical framework for aggregating and validating clusters with K-means.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru