Evolutionary Data Clustering: Algorithms and Applications, Aljarah Ibrahim, Faris Hossam, Mirjalili Seyedali
Автор: Olfa Nasraoui; Chiheb-Eddine Ben N`Cir Название: Clustering Methods for Big Data Analytics ISBN: 3319978632 ISBN-13(EAN): 9783319978635 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation.
Автор: Aljarah Ibrahim, Faris Hossam, Mirjalili Seyedali Название: Evolutionary Data Clustering: Algorithms and Applications ISBN: 9813341904 ISBN-13(EAN): 9789813341906 Издательство: Springer Цена: 25155.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: It features a range of proven and recent nature-inspired algorithms used to data clustering, including particle swarm optimization, ant colony optimization, grey wolf optimizer, salp swarm algorithm, multi-verse optimizer, Harris hawks optimization, beta-hill climbing optimization.
Описание: In a new approach to possibilistic clustering, the sought clustering structure of the set is based directly on the formal definition of fuzzy cluster and possibilistic memberships are determined directly from the values of the pairwise similarity of objects.
Автор: Ujjwal Maulik; Sanghamitra Bandyopadhyay; Anirban Название: Multiobjective Genetic Algorithms for Clustering ISBN: 3642439632 ISBN-13(EAN): 9783642439636 Издательство: Springer Рейтинг: Цена: 7680.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book covers clustering using multiobjective genetic algorithms, with extensive real-life application in data mining and bioinformatics. The authors offer instructions for relevant techniques, and demonstrate real-world applications in several disciplines.
Описание: Preface.- On Some Facets of the Partition Set of a Finite Set.- Two Methods of Non-hierarchical Clustering.- Structure and Mathematical Representation of Data.- Ordinal and Metrical Analysis of the Resemblance Notion.- Comparing Attributes by a Probabilistic and Statistical Association I.- Comparing Attributes by a Probabilistic and Statistical Association II.- Comparing Objects or Categories Described by Attributes.- The Notion of "Natural" Class, Tools for its Interpretation. The Classifiability Concept.- Quality Measures in Clustering.- Building a Classification Tree.- Applying the LLA Method to Real Data.- Conclusion and Thoughts for Future Works
Автор: Meera Ramadas; Ajith Abraham Название: Metaheuristics for Data Clustering and Image Segmentation ISBN: 3030040968 ISBN-13(EAN): 9783030040963 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: In this book, differential evolution and its modified variants are applied to the clustering of data and images. Metaheuristics have emerged as potential algorithms for dealing with complex optimization problems, which are otherwise difficult to solve using traditional methods. In this regard, differential evolution is considered to be a highly promising technique for optimization and is being used to solve various real-time problems. The book studies the algorithms in detail, tests them on a range of test images, and carefully analyzes their performance. Accordingly, it offers a valuable reference guide for all researchers, students and practitioners working in the fields of artificial intelligence, optimization and data analytics.
Автор: Jin Cheqing, Zhou Aoying, Mao Jiali Название: Clustering And Outlier Detection For Trajectory Stream Data ISBN: 9811210454 ISBN-13(EAN): 9789811210457 Издательство: World Scientific Publishing Рейтинг: Цена: 14256.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
As mobile devices continue becoming a larger part of our lives, the development of location acquisition technologies to track moving objects have focused the minds of researchers on issues ranging from longitude and latitude coordinates, speed, direction, and timestamping, as part of parameters needed to calculate the positional information and locations of objects, in terms of time and position in the form of trajectory streams. Recently, recent advances have facilitated various urban applications such as smart transportation and mobile delivery services.
Unlike other books on spatial databases, mobile computing, data mining, or computing with spatial trajectories, this book is focused on smart transportation applications.
This book is a good reference for advanced undergraduates, graduate students, researchers, and system developers working on transportation systems.
Описание: Preface.- On Some Facets of the Partition Set of a Finite Set.- Two Methods of Non-hierarchical Clustering.- Structure and Mathematical Representation of Data.- Ordinal and Metrical Analysis of the Resemblance Notion.- Comparing Attributes by a Probabilistic and Statistical Association I.- Comparing Attributes by a Probabilistic and Statistical Association II.- Comparing Objects or Categories Described by Attributes.- The Notion of "Natural" Class, Tools for its Interpretation. The Classifiability Concept.- Quality Measures in Clustering.- Building a Classification Tree.- Applying the LLA Method to Real Data.- Conclusion and Thoughts for Future Works
Автор: Olfa Nasraoui; Chiheb-Eddine Ben N`Cir Название: Clustering Methods for Big Data Analytics ISBN: 3030074196 ISBN-13(EAN): 9783030074197 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation.
Описание: This book presents the bi-partial approach to data analysis, which is both uniquely general and enables the development of techniques for many data analysis problems, including related models and algorithms. It is based on adequate representation of the essential clustering problem: to group together the similar, and to separate the dissimilar. This leads to a general objective function and subsequently to a broad class of concrete implementations. Using this basis, a suboptimising procedure can be developed, together with a variety of implementations.This procedure has a striking affinity with the classical hierarchical merger algorithms, while also incorporating the stopping rule, based on the objective function. The approach resolves the cluster number issue, as the solutions obtained include both the content and the number of clusters. Further, it is demonstrated how the bi-partial principle can be effectively applied to a wide variety of problems in data analysis.The book offers a valuable resource for all data scientists who wish to broaden their perspective on basic approaches and essential problems, and to thus find answers to questions that are often overlooked or have yet to be solved convincingly. It is also intended for graduate students in the computer and data sciences, and will complement their knowledge and skills with fresh insights on problems that are otherwise treated in the standard “academic” manner.
Автор: Viattchenin Dmitri A Название: Heuristic Approach to Possibilistic Clustering: Algorithms a ISBN: 3642355358 ISBN-13(EAN): 9783642355356 Издательство: Springer Рейтинг: Цена: 19591.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: In a new approach to possibilistic clustering, the sought clustering structure of the set is based directly on the formal definition of fuzzy cluster and possibilistic memberships are determined directly from the values of the pairwise similarity of objects.
Описание: This book presents the bi-partial approach to data analysis, which is both uniquely general and enables the development of techniques for many data analysis problems, including related models and algorithms.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru