Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Deriving Priorities from Incomplete Fuzzy Reciprocal Preference Relations, Xu Y.


Варианты приобретения
Цена: 23757.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Xu Y.   (Сюй)
Название:  Deriving Priorities from Incomplete Fuzzy Reciprocal Preference Relations
Перевод названия: Сюй: Выведение приоритетов из неполных нечетких отношений взаимных предпочтений
ISBN: 9789819931682
Издательство: Springer
Классификация:

ISBN-10: 9819931681
Обложка/Формат: Hardback
Вес: 0.00 кг.
Дата издания: 04.07.2023
Язык: English
Основная тема: Computer Science
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: As we know, multiplicative preference relations (or called pairwise comparisons in AHP) were proposed by Dr. Thomas L Saaty. One important work is to derive its priority from pairwise comparisons. It has been proposed many methods to derive priority for multiplicative preference relation. On the basis of fuzzy sets, the fuzzy reciprocal preference relation is proposed and is extended to the incomplete contexts. However, how to derive the priorities from incomplete fuzzy reciprocal preference relations is an interesting and challenging work. This book systematically presents the theories and methodologies for deriving priorities from incomplete fuzzy reciprocal preference relations. This book can be divided into three parts. In the first part, this book introduces the basic concepts of fuzzy reciprocal preference relations and incomplete fuzzy reciprocal preference relations. Then, two consistencies of complete fuzzy reciprocal preference relations are introduced: additive consistency and multiplicative consistency. Then, the relationships between the fuzzy reciprocal elements and the weights are showed. Afterward, in the second part, different priority methods are presented. The inconsistency repairing procedures are also proposed. Last, the priority method for incomplete hesitant fuzzy reciprocal preference relations is presented. This book can be used as a reference for researchers in the areas of management science, information science, systems engineering, operations research, and other relevant fields. It can also be employed as a textbook for upper-level undergraduate students and graduate students.
Дополнительное описание: Chapter 1. Introduction.- Chapter 2. Normalizing Rank Aggregation-based Method.- Chapter 3. Eigenvector Method.- Chapter 4. Logarithmic Least Squares Method.- Chapter 5. A Chi-Square Method.- Chapter 6. A Least Deviation Method.- Chapter 7. Priorities fro



Decision-Making Analyses with Thermodynamic Parameters and Hesitant Fuzzy Linguistic Preference Relations

Автор: Ren Peijia, Xu Zeshui
Название: Decision-Making Analyses with Thermodynamic Parameters and Hesitant Fuzzy Linguistic Preference Relations
ISBN: 3030732525 ISBN-13(EAN): 9783030732523
Издательство: Springer
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The book introduces readers to some of the latest advances in and approaches to decision-making methods based on thermodynamic characters and hesitant fuzzy linguistic preference relations.

Advanced Techniques in Web Intelligence-2

Автор: Juan D. Vel?squez; Vasile Palade; Lakhmi C. Jain
Название: Advanced Techniques in Web Intelligence-2
ISBN: 364243035X ISBN-13(EAN): 9783642430350
Издательство: Springer
Рейтинг:
Цена: 15672.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents tasks for gathering information on and interpreting user behavior in Web based systems, ubiquitous environments, social networks and traditional Web applications, in order to create new systems that personalize the Web user experience.

Formal Methods for Nonmonotonic and Related Logics

Автор: Karl Schlechta
Название: Formal Methods for Nonmonotonic and Related Logics
ISBN: 3319896520 ISBN-13(EAN): 9783319896526
Издательство: Springer
Рейтинг:
Цена: 11878.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The two volumes in this advanced textbook present results, proof methods, and translations of motivational and philosophical considerations to formal constructions. In this Vol. I the author explains preferential structures and abstract size. In the associated Vol. II he presents chapters on theory revision and sums, defeasible inheritance theory, interpolation, neighbourhood semantics and deontic logic, abstract independence, and various aspects of nonmonotonic and other logics.In both volumes the text contains many exercises and some solutions, and the author limits the discussion of motivation and general context throughout, offering this only when it aids understanding of the formal material, in particular to illustrate the path from intuition to formalisation. Together these books are a suitable compendium for graduate students and researchers in the area of computer science and mathematical logic.

Iterative Learning Control with Passive Incomplete Information

Автор: Dong Shen
Название: Iterative Learning Control with Passive Incomplete Information
ISBN: 9811341052 ISBN-13(EAN): 9789811341052
Издательство: Springer
Рейтинг:
Цена: 19564.00 р.
Наличие на складе: Поставка под заказ.

Описание: This book presents an in-depth discussion of iterative learning control (ILC) with passive incomplete information, highlighting the incomplete input and output data resulting from practical factors such as data dropout, transmission disorder, communication delay, etc.—a cutting-edge topic in connection with the practical applications of ILC. It describes in detail three data dropout models: the random sequence model, Bernoulli variable model, and Markov chain model—for both linear and nonlinear stochastic systems. Further, it proposes and analyzes two major compensation algorithms for the incomplete data, namely, the intermittent update algorithm and successive update algorithm. Incomplete information environments include random data dropout, random communication delay, random iteration-varying lengths, and other communication constraints. With numerous intuitive figures to make the content more accessible, the book explores several potential solutions to this topic, ensuring that readers are not only introduced to the latest advances in ILC for systems with random factors, but also gain an in-depth understanding of the intrinsic relationship between incomplete information environments and essential tracking performance. It is a valuable resource for academics and engineers, as well as graduate students who are interested in learning about control, data-driven control, networked control systems, and related fields.

Incomplete Information: Rough Set Analysis

Автор: Ewa Orlowska
Название: Incomplete Information: Rough Set Analysis
ISBN: 3790810495 ISBN-13(EAN): 9783790810493
Издательство: Springer
Рейтинг:
Цена: 27251.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This is an account of the current status of the basic theory, extensions and applications of rough sets. The book presents rough set formalisms and methods of modelling and handling incomplete information, and motivates their applicability to knowledge discovery and machine learning.

Robust Latent Feature Learning for Incomplete Big Data

Автор: Wu
Название: Robust Latent Feature Learning for Incomplete Big Data
ISBN: 9811981396 ISBN-13(EAN): 9789811981395
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Incomplete big data are frequently encountered in many industrial applications, such as recommender systems, the Internet of Things, intelligent transportation, cloud computing, and so on. It is of great significance to analyze them for mining rich and valuable knowledge and patterns. Latent feature analysis (LFA) is one of the most popular representation learning methods tailored for incomplete big data due to its high accuracy, computational efficiency, and ease of scalability. The crux of analyzing incomplete big data lies in addressing the uncertainty problem caused by their incomplete characteristics. However, existing LFA methods do not fully consider such uncertainty. In this book, the author introduces several robust latent feature learning methods to address such uncertainty for effectively and efficiently analyzing incomplete big data, including robust latent feature learning based on smooth L1-norm, improving robustness of latent feature learning using L1-norm, improving robustness of latent feature learning using double-space, data-characteristic-aware latent feature learning, posterior-neighborhood-regularized latent feature learning, and generalized deep latent feature learning. Readers can obtain an overview of the challenges of analyzing incomplete big data and how to employ latent feature learning to build a robust model to analyze incomplete big data. In addition, this book provides several algorithms and real application cases, which can help students, researchers, and professionals easily build their models to analyze incomplete big data.

Decision-Making Analyses with Thermodynamic Parameters and Hesitant Fuzzy Linguistic Preference Relations

Автор: Ren, Peijia Xu, Zeshui
Название: Decision-Making Analyses with Thermodynamic Parameters and Hesitant Fuzzy Linguistic Preference Relations
ISBN: 303073255X ISBN-13(EAN): 9783030732554
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The book introduces readers to some of the latest advances in and approaches to decision-making methods based on thermodynamic characters and hesitant fuzzy linguistic preference relations.

Incomplete Information: Structure, Inference, Complexity

Автор: Stephane P. Demri; Ewa Orlowska
Название: Incomplete Information: Structure, Inference, Complexity
ISBN: 3642075401 ISBN-13(EAN): 9783642075407
Издательство: Springer
Рейтинг:
Цена: 23058.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This monograph presents a systematic, exhaustive and up-to-date overview of formal methods and theories for data analysis and inference inspired by the concept of rough set. The formalisms developed are non-invasive in that only the actual information that is needed in the process of analysis without external sources of information being required.

Preference Learning

Автор: Johannes F?rnkranz; Eyke H?llermeier
Название: Preference Learning
ISBN: 3642422306 ISBN-13(EAN): 9783642422300
Издательство: Springer
Рейтинг:
Цена: 21661.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The first book dedicated to this new branch of machine learning and data mining, this comprehensive treatment, which covers everything from label ranking to preference learning and recommender systems, will be required reading for researchers working in AI.

Incomplete Information: Rough Set Analysis

Автор: Ewa Orlowska
Название: Incomplete Information: Rough Set Analysis
ISBN: 3790824577 ISBN-13(EAN): 9783790824575
Издательство: Springer
Рейтинг:
Цена: 27251.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In 1982, Professor Pawlak published his seminal paper on what he called "rough sets" - a work which opened a new direction in the development of theories of incomplete information.

Preferences and Decisions under Incomplete Knowledge

Автор: Janos Fodor; Bernard De Baets; Patrice Perny
Название: Preferences and Decisions under Incomplete Knowledge
ISBN: 3790824747 ISBN-13(EAN): 9783790824742
Издательство: Springer
Рейтинг:
Цена: 23757.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Nowadays, decision problems are pervaded with incomplete knowledge, i.e., imprecision and/or uncertain information, both in the problem description and in the preferential information.

Fuzzy Preference Ordering of Interval Numbers in Decision Problems

Автор: Atanu Sengupta; Tapan Kumar Pal
Название: Fuzzy Preference Ordering of Interval Numbers in Decision Problems
ISBN: 3642100600 ISBN-13(EAN): 9783642100604
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This text studies different real decision situations where problems are defined in inexact environment. It presents the latest research in fuzzy preference ordering of interval numbers and modeling of interval decision problems.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия