Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Multivariate Biomarker Discovery: Data Science Methods for Efficient Analysis of High-Dimensional Biomedical Data, Darius M. Dziuda


Варианты приобретения
Цена: 9502.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Англия: Есть  Склад Америка: Есть  
При оформлении заказа до: 2025-08-04
Ориентировочная дата поставки: Август-начало Сентября

Добавить в корзину
в Мои желания

Автор: Darius M. Dziuda
Название:  Multivariate Biomarker Discovery: Data Science Methods for Efficient Analysis of High-Dimensional Biomedical Data
ISBN: 9781316518700
Издательство: Cambridge Academ
Классификация:






ISBN-10: 1316518701
Обложка/Формат: Hardback
Страницы: 300
Вес: 0.68 кг.
Дата издания: 30.04.2024
Язык: English
Иллюстрации: Worked examples or exercises
Размер: 176 x 251 x 24
Ключевые слова: Genetics (non-medical), SCIENCE / Life Sciences / Genetics & Genomics
Подзаголовок: Data science methods for efficient analysis of high-dimensional biomedical data
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание: Multivariate biomarker discovery is increasingly important in the realm of biomedical research, and is poised to become a crucial facet of personalized medicine. This will prompt the demand for a myriad of novel biomarkers representing distinct omic biosignatures, allowing selection and tailoring treatments to the various individual characteristics of a particular patient. This concise and self-contained book covers all aspects of predictive modeling for biomarker discovery based on high-dimensional data, as well as modern data science methods for identification of parsimonious and robust multivariate biomarkers for medical diagnosis, prognosis, and personalized medicine. It provides a detailed description of state-of-the-art methods for parallel multivariate feature selection and supervised learning algorithms for regression and classification, as well as methods for proper validation of multivariate biomarkers and predictive models implementing them. This is an invaluable resource for scientists and students interested in bioinformatics, data science, and related areas.


Topological and Statistical Methods for Complex Data

Автор: Janine Bennett; Fabien Vivodtzev; Valerio Pascucci
Название: Topological and Statistical Methods for Complex Data
ISBN: 3662513706 ISBN-13(EAN): 9783662513705
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book contains papers presented at the Workshop on the Analysis of Large-scale, High-Dimensional, and Multi-Variate Data Using Topology and Statistics, held in Le Barp, France, June 2013.

Topological and Statistical Methods for Complex Data

Автор: Janine Bennett; Fabien Vivodtzev; Valerio Pascucci
Название: Topological and Statistical Methods for Complex Data
ISBN: 3662448998 ISBN-13(EAN): 9783662448991
Издательство: Springer
Рейтинг:
Цена: 19564.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book contains papers presented at the Workshop on the Analysis of Large-scale, High-Dimensional, and Multi-Variate Data Using Topology and Statistics, held in Le Barp, France, June 2013.

Multivariate Statistical Analysis

Автор: V.I. Serdobolskii
Название: Multivariate Statistical Analysis
ISBN: 0792366433 ISBN-13(EAN): 9780792366430
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Presents a branch of mathematical statistics which intends to construct unimprovable methods of multivariate analysis, multi-parametric estimation, and discriminant and regression analysis. This work is suitable for researchers and graduate students whose work involves statistics and probability, reliability and risk analysis, and econometrics.

Multivariate Statistical Analysis

Автор: V.I. Serdobolskii
Название: Multivariate Statistical Analysis
ISBN: 9048155932 ISBN-13(EAN): 9789048155934
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Multivariate Statistical Analysis

Applied Multivariate Data Analysis

Автор: J.D. Jobson
Название: Applied Multivariate Data Analysis
ISBN: 1461269474 ISBN-13(EAN): 9781461269472
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A Second Course in Statistics The past decade has seen a tremendous increase in the use of statistical data analysis and in the availability of both computers and statistical software.

High-dimensional Microarray Data Analysis

Автор: Shuichi Shinmura
Название: High-dimensional Microarray Data Analysis
ISBN: 9811359970 ISBN-13(EAN): 9789811359972
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book shows how to decompose high-dimensional microarrays into small subspaces (Small Matryoshkas, SMs), statistically analyze them, and perform cancer gene diagnosis. The information is useful for genetic experts, anyone who analyzes genetic data, and students to use as practical textbooks.Discriminant analysis is the best approach for microarray consisting of normal and cancer classes. Microarrays are linearly separable data (LSD, Fact 3). However, because most linear discriminant function (LDF) cannot discriminate LSD theoretically and error rates are high, no one had discovered Fact 3 until now. Hard-margin SVM (H-SVM) and Revised IP-OLDF (RIP) can find Fact3 easily. LSD has the Matryoshka structure and is easily decomposed into many SMs (Fact 4). Because all SMs are small samples and LSD, statistical methods analyze SMs easily. However, useful results cannot be obtained. On the other hand, H-SVM and RIP can discriminate two classes in SM entirely. RatioSV is the ratio of SV distance and discriminant range. The maximum RatioSVs of six microarrays is over 11.67%. This fact shows that SV separates two classes by window width (11.67%). Such easy discrimination has been unresolved since 1970. The reason is revealed by facts presented here, so this book can be read and enjoyed like a mystery novel.Many studies point out that it is difficult to separate signal and noise in a high-dimensional gene space. However, the definition of the signal is not clear. Convincing evidence is presented that LSD is a signal. Statistical analysis of the genes contained in the SM cannot provide useful information, but it shows that the discriminant score (DS) discriminated by RIP or H-SVM is easily LSD. For example, the Alon microarray has 2,000 genes which can be divided into 66 SMs. If 66 DSs are used as variables, the result is a 66-dimensional data. These signal data can be analyzed to find malignancy indicators by principal component analysis and cluster analysis.

Statistical Analysis for High-Dimensional Data: The Abel Symposium 2014

Автор: Frigessi Arnoldo, Buhlmann Peter, Glad Ingrid
Название: Statistical Analysis for High-Dimensional Data: The Abel Symposium 2014
ISBN: 3319800736 ISBN-13(EAN): 9783319800738
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Some Themes in High-Dimensional Statistics: A. Frigessi et al.- Laplace Appoximation in High-Dimensional Bayesian Regression: R. Barber, M. Drton et al.- Preselection in Lasso-Type Analysis for Ultra-High Dimensional Genomic Exploration: L.C. Bergersen, I. Glad et al.- Spectral Clustering and Block Models: a Review and a new Algorithm: S. Bhattacharyya et al.- Bayesian Hierarchical Mixture Models: L. Bottelo et al.- iBATCGH; Integrative Bayesian Analysis of Transcriptomic and CGH Data: Cassese, M. Vannucci et al.- Models of Random Sparse Eigenmatrices and Bayesian Analysis of Multivariate Structure: A.J. Cron, M. West.- Combining Single and Paired End RNA-seq Data for Differential Expression Analysis: F. Feng, T.Speed et al.- An Imputation Method for Estimation the Learning Curve in Classification Problems: E. Laber et al.- Baysian Feature Allocation Models for Tumor Heterogeneity: J. Lee, P. Mueller et al.- Bayesian Penalty Mixing: The Case of a Non-Separable Penalty: V. Rockova et al.- Confidence Intervals for Maximin Effects in Inhomogeneous Large Scale Data: D. Rothenhausler et al.- Chisquare Confidence Sets in High-Dimensional Regression: S. van de Geer et al.

Statistical Analysis for High-Dimensional Data

Автор: Arnoldo Frigessi; Peter B?hlmann; Ingrid Glad; Met
Название: Statistical Analysis for High-Dimensional Data
ISBN: 3319270974 ISBN-13(EAN): 9783319270975
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyv gar, Lofoten, Norway, in May 2014.

The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in "big data" situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection.

Highlighting cutting-edge research and casting light on future research directions, the contributions will benefit graduate students and researchers in computational biology, statistics and the machine learning community.

Bioinformatics and Biomarker Discovery

Автор: Azuale F.
Название: Bioinformatics and Biomarker Discovery
ISBN: 047074460X ISBN-13(EAN): 9780470744604
Издательство: Wiley
Рейтинг:
Цена: 17464.00 р.
Наличие на складе: Поставка под заказ.

Описание: Bioinformatics and Biomarker Discovery: ?€?Omic?€? Data Analysis for Personalized Medicine is designed to introduce biologists, clinicians and computational researchers to fundamental data analysis principles, techniques and tools for supporting the di

Statistical Methods in Biomarker and Early Clinical Development

Автор: Fang Liang, Su Cheng
Название: Statistical Methods in Biomarker and Early Clinical Development
ISBN: 3030315053 ISBN-13(EAN): 9783030315054
Издательство: Springer
Цена: 19564.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This contributed volume offers a much-needed overview of the statistical methods in early clinical drug and biomarker development.

Analysis of Multivariate Social Science Data

Автор: Bartholomew
Название: Analysis of Multivariate Social Science Data
ISBN: 1138464546 ISBN-13(EAN): 9781138464544
Издательство: Taylor&Francis
Рейтинг:
Цена: 29858.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Exploring how to use key multivariate methods in the social sciences, this book contains three chapters on regression analysis, confirmatory factor analysis and structural equation models, and multilevel models. It presents various examples of real-world applications and establishes an approach to latent variable modeling.

High-dimensional Covariance Estimation

Автор: Pourahmadi Mohsen
Название: High-dimensional Covariance Estimation
ISBN: 1118034295 ISBN-13(EAN): 9781118034293
Издательство: Wiley
Рейтинг:
Цена: 12664.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Methods for estimating sparse and large covariance matrices Covariance and correlation matrices play fundamental roles in every aspect of the analysis of multivariate data collected from a variety of fields including business and economics, health care, engineering, and environmental and physical sciences.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия