Creative Prototyping with Generative AI, Parra Pennefather
Автор: Edited By Roshani Raut, Pranav D Pathak, Sachin R Название: Generative Adversarial Networks and Deep Learning Theory and Applications ISBN: 1032068108 ISBN-13(EAN): 9781032068107 Издательство: Taylor&Francis Рейтинг: Цена: 22968.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book explores how to use generative adversarial networks in a variety of applications and emphasises their substantial advancements over traditional generative models. This book's major goal is to concentrate on cutting-edge research in deep learning and generative adversarial networks, which includes creating new tools and methods for processing text, images, and audio. A Generative Adversarial Network (GAN) is a class of machine learning framework and is the next emerging network in deep learning applications.
Generative Adversarial Networks(GANs) have the feasibility to build improved models, as they can generate the sample data as per application requirements. There are various applications of GAN in science and technology, including computer vision, security, multimedia and advertisements, image generation, image translation,text-to-images synthesis, video synthesis, generating high-resolution images, drug discovery, etc. Features:Presents a comprehensive guide on how to use GAN for images and videos.
Includes case studies of Underwater Image Enhancement Using Generative Adversarial Network, Intrusion detection using GANHighlights the inclusion of gaming effects using deep learning methodsExamines the significant technological advancements in GAN and its real-world application. Discusses as GAN challenges and optimal solutionsThe book addresses scientific aspects for a wider audience such as junior and senior engineering, undergraduate and postgraduate students, researchers, and anyone interested in the trends development and opportunities in GAN and Deep Learning. The material in the book can serve as a reference in libraries, accreditation agencies, government agencies, and especially the academic institution of higher education intending to launch or reform their engineering curriculum
Автор: Pesce, Mark Название: Getting started with chatgpt and ai chatbots ISBN: 1780176414 ISBN-13(EAN): 9781780176413 Издательство: Неизвестно Рейтинг: Цена: 2968.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Taulli Название: Generative AI ISBN: 148429369X ISBN-13(EAN): 9781484293690 Издательство: Springer Рейтинг: Цена: 7685.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book will show how generative technology works and the drivers. It will also look at the applications – showing what various startups and large companies are doing in the space. There will also be a look at the challenges and risk factors. During the past decade, companies have spent billions on AI. But the focus has been on applying the technology to predictions – which is known as analytical AI. It can mean that you receive TikTok videos that you cannot resist. Or analytical AI can fend against spam or fraud or forecast when a package will be delivered. While such things are beneficial, there is much more to AI. The next megatrend will be leveraging the technology to be creative. For example, you could take a book and an AI model will turn it into a movie – at very little cost. This is all part of generative AI. It’s still in the nascent stages but it is progressing quickly. Generative AI can already create engaging blog posts, social media messages, beautiful artwork and compelling videos. The potential for this technology is enormous. It will be useful for many categories like sales, marketing, legal, product design, code generation, and even pharmaceutical creation. What You Will Learn The importance of understanding generative AI The fundamentals of the technology, like the foundation and diffusion models How generative AI apps work How generative AI will impact various categories like the law, marketing/sales, gaming, product development, and code generation. The risks, downsides and challenges. Who This Book is For Professionals that do not have a technical background. Rather, the audience will be mostly those in Corporate America (such as managers) as well as people in tech startups, who will need an understanding of generative AI to evaluate the solutions.
Автор: Tomczak Название: Deep Generative Modeling ISBN: 3030931609 ISBN-13(EAN): 9783030931605 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This textbook tackles the problem of formulating AI systems by combining probabilistic modeling and deep learning. Moreover, it goes beyond typical predictive modeling and brings together supervised learning and unsupervised learning. The resulting paradigm, called deep generative modeling, utilizes the generative perspective on perceiving the surrounding world. It assumes that each phenomenon is driven by an underlying generative process that defines a joint distribution over random variables and their stochastic interactions, i.e., how events occur and in what order. The adjective "deep" comes from the fact that the distribution is parameterized using deep neural networks. There are two distinct traits of deep generative modeling. First, the application of deep neural networks allows rich and flexible parameterization of distributions. Second, the principled manner of modeling stochastic dependencies using probability theory ensures rigorous formulation and prevents potential flaws in reasoning. Moreover, probability theory provides a unified framework where the likelihood function plays a crucial role in quantifying uncertainty and defining objective functions. Deep Generative Modeling is designed to appeal to curious students, engineers, and researchers with a modest mathematical background in undergraduate calculus, linear algebra, probability theory, and the basics in machine learning, deep learning, and programming in Python and PyTorch (or other deep learning libraries). It will appeal to students and researchers from a variety of backgrounds, including computer science, engineering, data science, physics, and bioinformatics, who wish to become familiar with deep generative modeling. To engage the reader, the book introduces fundamental concepts with specific examples and code snippets. The full code accompanying the book is available on github. The ultimate aim of the book is to outline the most important techniques in deep generative modeling and, eventually, enable readers to formulate new models and implement them.
Автор: Tomczak Jakub M. Название: Deep Generative Modeling ISBN: 3030931579 ISBN-13(EAN): 9783030931575 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Поставка под заказ.
Описание: This textbook tackles the problem of formulating AI systems by combining probabilistic modeling and deep learning. Moreover, it goes beyond typical predictive modeling and brings together supervised learning and unsupervised learning. The resulting paradigm, called deep generative modeling, utilizes the generative perspective on perceiving the surrounding world. It assumes that each phenomenon is driven by an underlying generative process that defines a joint distribution over random variables and their stochastic interactions, i.e., how events occur and in what order. The adjective "deep" comes from the fact that the distribution is parameterized using deep neural networks. There are two distinct traits of deep generative modeling. First, the application of deep neural networks allows rich and flexible parameterization of distributions. Second, the principled manner of modeling stochastic dependencies using probability theory ensures rigorous formulation and prevents potential flaws in reasoning. Moreover, probability theory provides a unified framework where the likelihood function plays a crucial role in quantifying uncertainty and defining objective functions. Deep Generative Modeling is designed to appeal to curious students, engineers, and researchers with a modest mathematical background in undergraduate calculus, linear algebra, probability theory, and the basics in machine learning, deep learning, and programming in Python and PyTorch (or other deep learning libraries). It will appeal to students and researchers from a variety of backgrounds, including computer science, engineering, data science, physics, and bioinformatics, who wish to become familiar with deep generative modeling. To engage the reader, the book introduces fundamental concepts with specific examples and code snippets. The full code accompanying the book is available on github. The ultimate aim of the book is to outline the most important techniques in deep generative modeling and, eventually, enable readers to formulate new models and implement them.
Описание: Packed with intriguing real-world projects as well as theory, Generative AI with Python and TensorFlow 2 enables you to leverage artificial intelligence creatively and generate human-like data in the form of speech, text, images, and music.
Автор: Filipe Calegario Название: Designing Digital Musical Instruments Using Probatio ISBN: 3030028917 ISBN-13(EAN): 9783030028916 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The author presents Probatio, a toolkit for building functional DMI (digital musical instruments) prototypes, artifacts in which gestural control and sound production are physically decoupled but digitally mapped. He uses the concept of instrumental inheritance, the application of gestural and/or structural components of existing instruments to generate ideas for new instruments. To support analysis and combination, he then leverages a traditional design method, the morphological chart, in which existing artifacts are split into parts, presented in a visual form and then recombined to produce new ideas. And finally he integrates the concept and the method in a concrete object, a physical prototyping toolkit for building functional DMI prototypes: Probatio. The author's evaluation of this modular system shows it reduces the time required to develop functional prototypes.The book is useful for researchers, practitioners, and graduate students in the areas of musical creativity and human-computer interaction, in particular those engaged in generating, communicating, and testing ideas in complex design spaces.
Описание: HCI is a field of study that involves researching, designing, and developing software solutions that solve human problems. With this book, you will learn how to build and deploy a software prototype that will allow you to test and iterate your human-centered solution.
Автор: Bдhr Benjamin Название: Prototyping of User Interfaces for Mobile Applications ISBN: 3319850911 ISBN-13(EAN): 9783319850917 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Introduction.- State of Prototyping Mobile Application User-Interfaces.- Prototyping Requirements.- Blended Prototyping - Design and Implementation.- Comparative Evaluation of Blended Prototyping.- Conclusion.
Описание: This book constitutes the refereed proceedings of the First MICCAI Workshop on Deep Generative Models, DG4MICCAI 2021, and the First MICCAI Workshop on Data Augmentation, Labelling, and Imperfections, DALI 2021, held in conjunction with MICCAI 2021, in October 2021.
Автор: Henry Krahenbuhl John Название: Axure Prototyping Blueprints ISBN: 1783551976 ISBN-13(EAN): 9781783551972 Издательство: Неизвестно Рейтинг: Цена: 11355.00 р. Наличие на складе: Нет в наличии.